K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

Ta có: \(R'\left(v\right)=6000\cdot\left(-\dfrac{1}{v^2}\right)=\dfrac{-6000}{v^2}\)

Tốc độ thay đổi của nhịp tim khi lượng máu tim đẩy đi ở một nhịp (v 80) là: \(R'\left(80\right)=-\dfrac{6000}{80^2}=-0,9375\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) 

Ta có: \(f\left( { - x} \right) = {\left( { - x} \right)^2} = {x^2},f\left( x \right) = {x^2} \Rightarrow f\left( { - x} \right) = f\left( x \right)\)

Trục đối xứng của (P) là đường thẳng y = 0

b)    

Ta có: \(g\left( { - x} \right) =  - g\left( x \right)\)

Gốc tọa độ O là tâm đối xứng của đường thẳng d

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

x

\( - \pi \)

\( - \frac{{2\pi }}{3}\)

\[ - \frac{\pi }{2}\]

\( - \frac{\pi }{3}\)

0

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\pi \)

\(y = \cos x\)

-1

\( - \frac{1}{2}\)

0

\(\frac{1}{2}\)

1

\(\frac{1}{2}\)

0

\( - \frac{1}{2}\)

-1

 

b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\cos x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \cos x\) trên đoạn \(x \in \left[ { - \pi ;\pi } \right]\) (Hình 27)

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \cos x\)trên R được biểu diễn ở Hình 28.

 

20 tháng 7 2018

Đáp án A

19 tháng 10 2018

Đáp án C

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

9 tháng 3 2019

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có bảng chuyển đổi số đo độ và số đo radian của một số góc sau:

Độ

\({18^ \circ }\)

\(\frac{{2\pi }}{9}.\frac{{180}}{\pi } = {40^ \circ }\)

\({72^ \circ }\)

\(\frac{{5\pi }}{6}.\frac{{180}}{\pi } = {150^ \circ }\)

Radian

\(18.\frac{\pi }{{180}} = \frac{\pi }{{10}}\)

\(\frac{{2\pi }}{9}\)

\(72.\frac{\pi }{{180}} = \frac{{2\pi }}{5}\)

\(\frac{{5\pi }}{6}\)