Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1, do đó hàm số đồng biến khi hệ số của x dương. Vậy m – 1 > 0 hay m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5, do đó hàm số nghịch biến khi hệ số của x âm.
Vậy 5 – k < 0 hay 5 < k thì hàm số nghịch biến.
a) Hàm số bậc nhất y = (m – 1)x +3 đồng biến
⇔ m -1 > 0
⇔ m > 1
Vậy: Với m > 1 thì hàm số đồng biến
b)
Hàm số bậc nhất y = (5 – k)x+1 nghịch biến
⇔ 5 – k < 0
⇔ k > 5
Vậy: Với k > 5 thì hàm số nghịch biến
a Để hàm số y đồng biến trên R
thì k2+2/k-3 > 0 đk k khác 3
mà k2+2>0 thì k-3 > 0 suy ra k>3
b Để hàm số Y đồng biến trên R
thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2
Hoành độ giao điểm thỏa mãn pt
\(\left(k-\frac{2}{3}\right)x+1=\left(2-k\right)x-3\)
\(\Leftrightarrow kx-\frac{2}{3}x+1=2x-xk-3\Leftrightarrow2xk-\frac{8}{3}x+4=0\)
Thay x = 4 vào pt trên ta được :
\(8k-\frac{32}{3}+4=0\Leftrightarrow k=\frac{5}{6}\)
y = (k+1)x +3 (d)
và y = (3-2k)x + 1 (d’)
Các hàm số đã cho là hàm số bậc nhất khi:
a) Vì đã có 3 ≠ 1 nên (d) // (d’) khi và chỉ khi
k+1 = 3 – 2k
k = 2/3 (TMĐK (*))
Vậy với k = 2/3 thì đồ thị của hai hàm số là hai đường thẳng (d) và (d’) song song với nhau.
b) Hai đường thẳng (d) cắt (d’) khi và chỉ khi k+1 ≠ 3 – 2k
k ≠ 2/3
Vậy với k ≠ -1, k ≠3/2 và k ≠ 2/3 thì đồ thị của hai hàm số là hai đường thẳng (d) và (d’) cắt nhau.
c) Hai đường thẳng (d) và (d’) không thể trùng nhau vì có tung độ gốc khác nhau (do 3 ≠ 1).
a Để đây là hàm số bậc nhất thì |k-3|<>1
hay \(k\notin\left\{4;2\right\}\)
b: Để đây là hàm số bậc nhất thì k^2-4=0 và k-2<>0
=>k=-2
c: Để đây là hàm số bậc nhất thì \(\dfrac{\sqrt{3-k}}{k+2}< >0\)
=>k<=3 và k<>-2
d: Để đây là hàm số bậc nhất thì k>0; k<>4
D
Chọn D