K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAOM vuông tại A có \(\cos\widehat{OAM}=\dfrac{R}{2R}=\dfrac{1}{2}\)

nên \(\widehat{OAM}=60^0\)(1)

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: OM là phân giác của góc AOB(2)

Từ (1) và (2) suy ra \(\widehat{AOB}=120^0\)

18 tháng 8 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

NM
18 tháng 1 2021

O A B M I

Gọi I là trung điêm OM

do đó ta có tính chất của trung tuyến ứng với cạnh huyền lầ

 \(IO=IA=IM=\frac{1}{2}OM=\frac{1}{2}.2R=R\)

Xét tam giác IOA có \(IO=OA=AI=R\Rightarrow\)tam giác IOA đều nên IOA = 60 độ

chứng minh tương tự ta sẽ có góc IOB=60 độ 

nên AOB=AOI+IOB=120 độ

16 tháng 2 2021

AOB=120

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại Na) Cho OM = 2R. Tính AON và số đo A NBb) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)cắt AB, AC tương ứng tại M và N.a) Chứng minh các cung nhỏ BM và CN có số...
Đọc tiếp

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,
MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại N
a) Cho OM = 2R. Tính AON và số đo A NB
b) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.
Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)
cắt AB, AC tương ứng tại M và N.
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính MON , nếu BAC =40o
Bài 9: Trên cung nhỏ AB của đường tròn (O), cho hai điểm C, D sao cho cung AB được
chia thành ba cung bằng nhau, tức là AC =CD =DB . Bán kính OC và OD cắt dây AB lần
lượt tại E và F.
a) Hãy so sánh các đoạn thẳng AE, EF và FB
b) Chứng minh rằng AB // CD
Cả hình giúp mình nhé! mơn trc nàhihi

1

Bài 7:

a: Xét ΔOAM vuông tại A có 

\(\cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AOM}=60^0\)

b: Xét tứ giác OAMB có 

\(\widehat{OAM}+\widehat{OBM}=180^0\)

Do đó: OAMB là tứ giác nội tiếp

Suy ra: \(\widehat{AOB}=180^0-36^0=144^0\)

3 tháng 8 2018

Đáp án là C

Đề kiểm tra Toán 9 | Đề thi Toán 9

Xét tam giác MAO vuông tại A có AO = R; MA = R 3

Đề kiểm tra Toán 9 | Đề thi Toán 9

a: Ta có: ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

b: Xét ΔMOA vuông tại A có \(sinMOA=\dfrac{MA}{MO}=\dfrac{\sqrt{3}}{2}\)

nên \(\widehat{MOA}=60^0\)

=>\(\widehat{AON}=60^0\)

=>\(\widehat{\left(ON;OA\right)}=60^0\)

c: Xét (O) có

\(\widehat{AON}\) là góc ở tâm chắn cung AN nhỏ

Do đó: \(sđ\stackrel\frown{AN}_{nhỏ}=\widehat{AON}=60^0\)

Số đo cung lớn AN là:

\(360-60=300^0\)

1 tháng 9 2019

Giải bài 5 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

Góc ở tâm tạo bởi OA và OB là Giải bài 5 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tứ giác OAMB có:

17 tháng 10 2018

a, Sử dụng tỉ số lượng giác trong tam giác vuông ∆AMO ta tính được  A O M ^ = 60 0

b, Tính được  A O B ^ = 120 0 , sđ  A B C ⏜ = 120 0

c, Ta có  A O C ⏜ = B O C ⏜ => A C ⏜ = B C ⏜