K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi x(ngày) và y(ngày) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>20; y>20)

Trong 1 ngày, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 ngày, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 ngày, hai người làm được: \(\dfrac{1}{20}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\)(1)

Vì khi làm chung được 10 ngày thì người thứ nhất đi làm việc khác, người thứ hai vẫn tiếp tục công việc và hoàn thành trong 15 ngày nên ta có phương trình:

\(\dfrac{10}{x}+\dfrac{25}{y}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\\\dfrac{10}{x}+\dfrac{25}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{x}+\dfrac{10}{y}=\dfrac{1}{2}\\\dfrac{10}{x}+\dfrac{25}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-15}{y}=\dfrac{-1}{2}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=30\\\dfrac{1}{x}=\dfrac{1}{20}-\dfrac{1}{30}=\dfrac{1}{60}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=30\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thứ nhất cần 60 ngày để hoàn thành công việc khi làm một mình

Người thứ hai cần 30 ngày để hoàn thành công việc khi làm một mình

22 tháng 2 2021

Cảm ơn bạn nhiều 😄😄😄