K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Gọi số máy của cả đội thứ nhất; đội thứ hai; đội thứ ba lần lượt là x(máy); y(máy); z(máy) (x; y; z là số tự nhiên khác 0)

Ta có số máy và số ngày làm việc tỉ lệ nghịch với số máy (vì năng suất của mỗi máy là như nhau

nên 2x = 3y = 4z hay \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)

mà y - z = 3 (đội thứ hai nhiều hơn đội thứ ba 3 máy)

Theo tính chất dãy tỉ số bằng nhau ta có

 \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{y-z}{\frac{1}{3}-\frac{1}{4}}=\frac{3}{\frac{1}{12}}=36\)

do đó x = 1/2 . 36 = 18

          y = 1/3 . 36 = 12

          z = 1/4 . 36 = 9

Vậy số máy của cả ba đội lần lượt là: 18(máy); 12(máy); 9(máy)

17 tháng 12 2017
Số máyabc
Số ngày 234

Gọi 3 đội máy san đất lần lượt là a,b,c ( a, b, c >0) 

Vì số máy và số ngày là 2 đại lượng tỉ lệ nghịch nên 

Ta có :2.a=3.b=4.c\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\)\(\)

\(\)Hay:\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

                       Áp dụng tính chất dãy tỉ số bằng nhau :

                              \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{b-c}{4-3}=\frac{3}{1}=3\)

\(\frac{a}{6}=1\Rightarrow a=6\)

\(\frac{b}{4}=1\Rightarrow b=4\)

\(\frac{c}{3}=1\Rightarrow c=3\)

Vậy đội 1, 2, 3 có số máy lần lượt là :6 máy, 4 máy, 3 máy

Gọi số máy san đất của ba đội lần lượt là a ; b ; c \(\left(a;b;c\ne0\right)\)

Vì đội thứ nhất nhiều hơn đội thứ hai 2 máy \(\Rightarrow a-b=2\)

Vì đội thứ nhất hoàn thành công việc trong 3 ngày, đội thứ hai trong 4 ngày, đội thứ 3 trong 6 ngày \(\Rightarrow3a=4b=6c\).

Trên cùng một khối lượng công việc như nhau, số máy san đất và thời gian là 2 đại lượng tỉ lệ nghịch :

\(\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) . Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a-b}{\frac{1}{3}-\frac{1}{4}}=\frac{2}{\frac{1}{12}}=2\div\frac{1}{12}=2\times\frac{12}{1}=24\)

\(\Rightarrow a=24\div3=8\)         \(b=24\div4=6\)         \(c=24\div6=4\)

Vậy đội thứ nhất có 8 máy, đội thứ hai có 6 máy, đội thứ ba có 4 máy.

Gọi số máy của 3 đội là 1 , 2, 3, là a , b ,c ( máy )

=> a - b = 2

Do các máy có cùng năng suất và khối lượng công việc mỗi đội như nhau nên : 3a = 4b = 6c

=> 3a/24 = 4b/24 = 6c/24 => a/8 = b/6 = c/4

Áp dụng tính chất dãy tỉ số bằng nhau ta có : a/8 = b/6 = c/4 = a - b/8 - 6 = 2/2 = 1

a/8 = 1 => a = 8

b/6 = 1 => b = 6

c/6 = 1 => 

14 tháng 12 2018

Gọi x,y,z lần lượt là ba đội máy san 

Ta có: 8x=6y=4z và z-y=8

\(\Rightarrow\)8x/24=6y/24=4z/24 và   z-y=8

\(\Rightarrow\)x/3=y/4=z/6 và z-y=8

ADTCDTSBN, ta có:

y/4=z/6 =z-y/6-4=8/2=4

x/3=4 thì x =12

y/4=4 thì y=16

z/6=4 thì z=24

Vậy: đội 1 có 12 máy, đội 2 có 16 máy, đội 3 có 24 máy

14 tháng 12 2018

Gọi số máy của 3 đội 1,2,3 là x,y,z (máy) x,y,z\(\inℕ^∗\)

TBR, ta có : số máy và thời gian là 2 ĐLTLN

\(\Rightarrow\)8x=6y=4z

\(\Rightarrow\frac{x}{\frac{1}{8}}\)=\(\frac{z}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}\)

Ấp dụng tính chất của dãy tỉ số bằng nhau .TC

   \(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{4}}=\)\(\frac{z}{\frac{1}{4}}-\frac{y}{\frac{1}{6}}=\frac{8}{\frac{1}{12}}=96\)

\(\Rightarrow\frac{x}{\frac{1}{8}}=96\Rightarrow x=\frac{1}{8}.96=12\left(TM\right)\)

\(\Rightarrow\frac{y}{\frac{1}{6}}=96\Rightarrow y=\frac{1}{6}.96=16\left(TM\right)\)

MÀ \(\frac{z}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}\Rightarrow\frac{z}{\frac{1}{4}}=96\Rightarrow z=\frac{1}{4}.96=24\left(TM\right)\)

Vậy số máy của 3 đội 1,2,3 lần lượt là 12,16,24 máy

DD
30 tháng 7 2021

Gọi số máy của mỗi đội lần lượt là \(x,y,z\)(máy) \(x,y,z\inℕ^∗\)

Ta có: \(4x=6y=8z\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)

\(\Leftrightarrow\hept{\begin{cases}x=1.6=6\\y=1.4=4\\z=1.3=3\end{cases}}\)