Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc xe thứ 2 là x(x>0) km/h
Vận tốc xe thứ nhất là x+10km/h
thời gian xe thứ nhất đi hết quãng đường AB là \(\dfrac{100}{x+10}\)h
thời gian xe thứ 2 đi hết quãng đường AB là \(\dfrac{100}{x}\)h
Vì xe thứ nhất đến B sớm hơn xe thứ 2 là 30p=\(\dfrac{1}{2}\)h nên ta có pt
\(\dfrac{100}{x}\)-\(\dfrac{100}{x+10}\)=\(\dfrac{1}{2}\)
giải pt x=40
vậy vận tốc xe thứ 2 là 40km/h
=> vận tốc xe thứ 2 là 40+10=50 km/h
THAM KHẢO :
Gọi vận tốc của xe thứ nhất a (km/h),
vận tốc của xe thứ hai là là b(km/h) (a>10,b>0)
Vận tốc của xe thiws nhất lớn hơn vận tốc của xe thứ hai là 10km/giờ nên a=b+10(1)
Quãng đường AB dài 100km.
Thời gian đi hết quãng đường AB của xe thứ nhất là 100/a(giờ)
Thời gian đi hết quãng đường AB của xe thứ hai là 100/b (giờ)
Xe thứ nhất đến B sớm hơn xe thứ hai 30 phút=1/2 giờ nên ta có:
100a+12=100b(2)
Thay (1) và (2) ta có:
100b+10+12=100b
⇒100.2.b+b(b+10)=100.2.(b+10)
⇔b2+10b−2000=0
⇔(b−40)(b+50)=0⇔
⇒b=40(nhận) suy ra a=50km/h
Hoặc b=−50b=−50 (loại)
Vậy vận tốc của xe thứ nhất là 50 km/h; vận tốc của xe thứ hai là 40 km/h.
Chúc bạn học tốt
gọi x vận tốc của xe thứ 1
y là vận tốc của xe thứ 2 (km/h)
(y>0;x>10)
vì vận tốc xe thứ 1 lớn hơn xe thứ 2 là 10km /h nên ta có phương trình:
x-y=10(1)
thgian xe thứ 1 đi hết quãng đường AB là \(\dfrac{100}{x}\)(h)
thgian xe thứ 2 đi hết quãng đường AB là \(\dfrac{100}{y}\)(h)
vì xe thứ 1 đến B trước xe thứu 2là 30'=\(\dfrac{1}{2}\)h nên ta có phương trình:
\(\dfrac{100}{y}-\dfrac{100}{x}\)=\(\dfrac{1}{2}\)(2)
từ (1) và (2) at có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{200}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{x-y}{xy}=\dfrac{1}{200}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\xy=2000\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=10+y\\\text{y ( 10 + y ) = 2000}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=10+y\\\text{y^2 + 10y − 2000 = 0 }\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=10+y\\\text{( y − 40 ) ( y + 50 ) = 0}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=10+y\\\left[{}\begin{matrix}y=40\left(TM\right)\\y=-50\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=50\\y=40\end{matrix}\right.\)
vậy...
mk sữa lại nha
pt thứ 2: \(\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\)(2)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{200}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{x-y}{xy}=\dfrac{1}{200}\end{matrix}\right.\).....
Bạn tích dùng cho mình đi không biết mình có giải đúng không nếu bạn cho là mình làm đúng thì tích đi mình sẽ giải ngay sau đó
Gọi vận tốc hai xe lần lượt là \(a,b\left(b>a\right)\)(km/h)
Vì xe thứ hai đi được \(\dfrac{2}{3}\) đoạn đường mới gặp xe thứ nhất nên xe thứ nhật đi được \(\dfrac{1}{3}\) đoạn đường mới gặp xe thứ hai hay vận tốc xe thứ hai với xe thứ nhất lần lượt là \(2:1\)
Ta có:
\(b-a=10\) và \(\dfrac{b}{a}=\dfrac{2}{1}\)
Từ \(\dfrac{b}{a}=\dfrac{2}{1}\) suy ra \(\dfrac{b}{2}=\dfrac{a}{1}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{b}{2}=\dfrac{a}{1}=\dfrac{b-a}{2-1}=\dfrac{10}{1}=10\)
Suy ra:
\(b=10\cdot2=20\)
\(a=10\cdot1=10\)
Vậy vận tốc xe thứ nhất sẽ là 10 km/h và vận tốc xe thứ hai là 20 km/h.