Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc xe thứ 2 là x(x>0) km/h
Vận tốc xe thứ nhất là x+10km/h
thời gian xe thứ nhất đi hết quãng đường AB là \(\dfrac{100}{x+10}\)h
thời gian xe thứ 2 đi hết quãng đường AB là \(\dfrac{100}{x}\)h
Vì xe thứ nhất đến B sớm hơn xe thứ 2 là 30p=\(\dfrac{1}{2}\)h nên ta có pt
\(\dfrac{100}{x}\)-\(\dfrac{100}{x+10}\)=\(\dfrac{1}{2}\)
giải pt x=40
vậy vận tốc xe thứ 2 là 40km/h
=> vận tốc xe thứ 2 là 40+10=50 km/h
THAM KHẢO :
Gọi vận tốc của xe thứ nhất a (km/h),
vận tốc của xe thứ hai là là b(km/h) (a>10,b>0)
Vận tốc của xe thiws nhất lớn hơn vận tốc của xe thứ hai là 10km/giờ nên a=b+10(1)
Quãng đường AB dài 100km.
Thời gian đi hết quãng đường AB của xe thứ nhất là 100/a(giờ)
Thời gian đi hết quãng đường AB của xe thứ hai là 100/b (giờ)
Xe thứ nhất đến B sớm hơn xe thứ hai 30 phút=1/2 giờ nên ta có:
100a+12=100b(2)
Thay (1) và (2) ta có:
100b+10+12=100b
⇒100.2.b+b(b+10)=100.2.(b+10)
⇔b2+10b−2000=0
⇔(b−40)(b+50)=0⇔
⇒b=40(nhận) suy ra a=50km/h
Hoặc b=−50b=−50 (loại)
Vậy vận tốc của xe thứ nhất là 50 km/h; vận tốc của xe thứ hai là 40 km/h.
Chúc bạn học tốt
Gọi vận tốc xe thứ nhất, xe thứ 2 lần lượt là x ; y ( x ; y > 0 )
Theo bài ra ta có hpt \(\left\{{}\begin{matrix}x-y=10\\\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{100}{y}-\dfrac{100}{10+y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=40\\x=50\end{matrix}\right.\left(tm\right)\)
Gọi vận tốc của xe thứ hai là x(km/h)(Điều kiện: x>0)
Vận tốc của xe thứ nhất là: x+12(km/h)
Thời gian ô tô thứ nhất đi từ A đến B là: \(\dfrac{120}{x+12}\left(h\right)\)
Thời gian ô tô thứ hai đi từ A đến B là: \(\dfrac{120}{x}\left(h\right)\)
Theo đề, ta có phương trình:
\(\dfrac{120}{x}-\dfrac{120}{x+12}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-240x}{2x\left(x+12\right)}+\dfrac{240\left(x+12\right)}{2x\left(x+12\right)}=\dfrac{x\left(x+12\right)}{2x\left(x+12\right)}\)
Suy ra: \(-240x+240x+2880=x^2+12x\)
\(\Leftrightarrow x^2+12x-2880=0\)
\(\Delta=12^2-4\cdot1\cdot\left(-2880\right)=11664\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-12-108}{2}=-60\left(loại\right)\\x_1=\dfrac{-12+108}{2}=48\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc của ô tô thứ nhất là 60km/h
Vận tốc của ô tô thứ hai là 48km/h
Gọi vận tốc của ô tô thứ nhất là \(x (x>12)(km/h)\)
Khi đó vận tốc của ô tô thứ hai là \(x−12(km/h)\)
Thời gian ô tô thứ nhất đi từ A đến B là \(\dfrac{120}{x}\) \((h)\)
Thời gian ô tô thứ hai đi từ A đến B là \(\dfrac{120}{x-12}\) \((h)\)
Vì ô tô thứ nhất đến B trước ô tô thứ hai 30 phút = \(\dfrac{1}{2}\) h nên ta có phương trình:
\(\dfrac{120}{x-12}\) - \(\dfrac{120}{x}\) = \(\dfrac{1}{2}\)
\(\Leftrightarrow\) \(240x - 240 ( x-12)=x(x-12)\)
\(\Leftrightarrow\) \(240x-240x+2880 = x^2-12x\)
\(\Leftrightarrow\)\(x ^2 − 12 x − 2880 = 0 \)
\(\Leftrightarrow\)\(( x − 60 ) ( x + 48 ) = 0 \)
\(\Leftrightarrow\)\( \)[\(x-60=0 \) \(\Leftrightarrow\) [\(x = 60\)\(tm\)
\(x+48=0\) \(x=48(tm)\)
Đáp án B
Gọi vận tốc của xe thứ nhất là x (km/h) (x > 10).
Vận tốc của xe thứ hai là x – 10 (km/h).
Thời gian xe thứ nhất đi từ A đến B là 50/x (h).
Thời gian xe thứ hai đi từ A đến B là (h).
Vì xe thứ nhất đến B trước xe thứ hai 15 phút = 1/4 h nên ta có phương trình:
Vậy vận tốc của xe thứ nhất là 50 km/h, vận tốc của xe thứ hai là 40 km/h.
Gọi vận tốc người 2 là x
=>Vận tốc người 1 là x+10
Theo đề, ta có: \(\dfrac{120}{x}-\dfrac{120}{x+10}=\dfrac{2}{5}\)
=>\(\dfrac{120x+1200-120x}{x^2+10x}=\dfrac{2}{5}\)
=>2x^2+20x=5*1200=6000
=>x^2+10x-3000=0
=>x=50
=>Vận tốc xe 1 là 60km/h
gọi x vận tốc của xe thứ 1
y là vận tốc của xe thứ 2 (km/h)
(y>0;x>10)
vì vận tốc xe thứ 1 lớn hơn xe thứ 2 là 10km /h nên ta có phương trình:
x-y=10(1)
thgian xe thứ 1 đi hết quãng đường AB là \(\dfrac{100}{x}\)(h)
thgian xe thứ 2 đi hết quãng đường AB là \(\dfrac{100}{y}\)(h)
vì xe thứ 1 đến B trước xe thứu 2là 30'=\(\dfrac{1}{2}\)h nên ta có phương trình:
\(\dfrac{100}{y}-\dfrac{100}{x}\)=\(\dfrac{1}{2}\)(2)
từ (1) và (2) at có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{200}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{x-y}{xy}=\dfrac{1}{200}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\xy=2000\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=10+y\\\text{y ( 10 + y ) = 2000}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=10+y\\\text{y^2 + 10y − 2000 = 0 }\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=10+y\\\text{( y − 40 ) ( y + 50 ) = 0}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=10+y\\\left[{}\begin{matrix}y=40\left(TM\right)\\y=-50\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=50\\y=40\end{matrix}\right.\)
vậy...
mk sữa lại nha
pt thứ 2: \(\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\)(2)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{200}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{x-y}{xy}=\dfrac{1}{200}\end{matrix}\right.\).....