Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O D E N P
Xét đường tròn (O) có 2 tiếp tuyến NE, NC (E và C là tiếp điểm) => EN = CN (T/c 2 tiếp tuyến giao nhau)
Ta thấy: ^BAC nội tiếp (O), phân giác ^BAC cắt (O) tại điểm thứ hai E => E là điểm chính giữa cung nhỏ BC
=> OE vuông góc với BC. Mà EN vuông góc OE nên EN // BC. Áp dụng ĐL Thales có:
\(\frac{CN}{CD}=\frac{EN}{CD}=\frac{PN}{CP}\)=> \(\frac{CN}{CD}+\frac{CN}{CP}=\frac{PN+CN}{CP}=1\)=> \(\frac{1}{CN}=\frac{1}{CD}+\frac{1}{CP}\)(đpcm).
A B D C M N H O I E F G K J
a) Xét tam giác ADC có MH//AC nên \(\frac{AM}{MD}=\frac{CH}{HD}\) (Định lý Ta-let)
Lại có theo giả thiết \(\frac{AM}{MD}=\frac{CN}{BN}\)
Suy ra \(\frac{CN}{BN}=\frac{CH}{DH}\)
Xét tam giác DBC có \(\frac{CN}{BN}=\frac{CH}{DH}\) nên áp dụng định lý đảo của định lý Talet ta có HN//BD
b) Gọi giao điểm của MH với BD là G; của AC với NH là K, của OH với GK là J.
Trước hết, ta chứng minh GK//MN.
Thật vậy, do HM // AC nên theo định lý Ta let ta có \(\frac{MG}{GH}=\frac{AO}{OC}\)
Do HN//BD (cma) nên \(\frac{KN}{KH}=\frac{OB}{OD}\)
Mà \(\frac{OB}{OD}=\frac{AO}{OC}\Rightarrow\frac{MG}{GH}=\frac{KN}{KH}\)
Theo định lý Ta lét đảo, suy ra GK//MN.
Xét tứ giác OGHK có GO//HK; GH//OK nên OGHK là hình bình hành
Vậy thì J là trung điểm của EK.
Xét tam giác OGK có EF // GK nên ta có :
\(\frac{EI}{GJ}=\frac{FI}{KJ}\Rightarrow\frac{EI}{GJ}=\frac{FI}{GJ}\Rightarrow EI=FI\)
Ta cũng có GK//MN nên :
\(\frac{GJ}{MI}=\frac{KJ}{IN}\Rightarrow MI=NI\Rightarrow ME=NF\)
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
O A B D E C H P F N M I
a) Ta có \(\sin\widehat{OAB}=\frac{OB}{OA}=\frac{1}{2}\). Suy ra \(\widehat{BAC}=2\widehat{OAB}=60^0\)
Vì AB = AC nên \(\Delta ABC\) đều. Vậy \(BC=AB=OB\sqrt{3}=R\sqrt{3}\)
Gọi I là tiếp điểm của FN với (O). Ta có:
\(\widehat{MON}=\widehat{IOM}+\widehat{ION}=\frac{1}{2}\left(\widehat{IOB}+\widehat{IOC}\right)=\frac{1}{2}\widehat{BOC}=60^0=\widehat{MCN}\)
Suy ra tứ giác MNCO nội tiếp.
b) Theo hệ thức lượng: \(\overline{AH}.\overline{AO}=AB^2=\overline{AD}.\overline{AE}\). Suy ra tứ giác DHOE nội tiếp
Ta thấy \(OD=OE,HO\perp HB\), do đó HO,BC là phân giác ngoài và phân giác trong \(\widehat{DHE}\)
Dễ thấy D và P đối xứng nhau qua OA vì dây cung \(DP\perp OA\)
Vì \(\widehat{DHE}+\widehat{DHP}=2\left(\widehat{DHB}+\widehat{DHA}\right)=180^0\) nên P,H,E thẳng hàng.
c) Do N,O,E thẳng hàng nên \(\widehat{DOE}=180^0-\widehat{MON}=120^0\). Suy ra \(DE=R\sqrt{3}\)
Theo hệ thức lượng thì:
\(AD.AE=AB^2\Rightarrow AD^2+AD.DE=AB^2\)
\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-\left(\frac{AB}{DE}\right)^2=0\)
\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-1=0\) vì \(AB=DE=R\sqrt{3}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{AD}{DE}=\frac{-1+\sqrt{5}}{2}\left(c\right)\\\frac{AD}{DE}=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\) vì \(\frac{AD}{DE}>0\)
\(\Rightarrow\frac{AD}{AE}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}.\)
ta có: góc ACD= góc ABD (vì cùng chắn cung AD nhỏ)
xét tam giác ACG và tam giác DBG có:
góc AGC =góc DGB (2 góc đối đỉnh)
góc ACG= góc DBG (cmt)
=> tam giác AGC ~ tam giác DGB(g-g)
=>\(\frac{AG}{AC}=\frac{DG}{DB}\) \(\Rightarrow\frac{AG}{DG}=\frac{CG}{BG}\)(1)
ta có GM là phân giác góc AGD => \(\frac{AG}{GD}=\frac{AM}{MD}\left(2\right)\)
Ta có: góc CGB = góc AGD (2 góc đối đỉnh)
mà MN là phân giác góc AGD
=> MN là phân giác gócCGB
hay GN là phân giác góc CGB
=> \(\frac{CG}{BG}=\frac{CN}{BN}\)(3)
từ (1);(2) và (3) ta có \(\frac{AM}{MD}=\frac{CN}{NB}\left(đpcm\right)\)