Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: góc ACD= góc ABD (vì cùng chắn cung AD nhỏ)
xét tam giác ACG và tam giác DBG có:
góc AGC =góc DGB (2 góc đối đỉnh)
góc ACG= góc DBG (cmt)
=> tam giác AGC ~ tam giác DGB(g-g)
=>\(\frac{AG}{AC}=\frac{DG}{DB}\) \(\Rightarrow\frac{AG}{DG}=\frac{CG}{BG}\)(1)
ta có GM là phân giác góc AGD => \(\frac{AG}{GD}=\frac{AM}{MD}\left(2\right)\)
Ta có: góc CGB = góc AGD (2 góc đối đỉnh)
mà MN là phân giác góc AGD
=> MN là phân giác gócCGB
hay GN là phân giác góc CGB
=> \(\frac{CG}{BG}=\frac{CN}{BN}\)(3)
từ (1);(2) và (3) ta có \(\frac{AM}{MD}=\frac{CN}{NB}\left(đpcm\right)\)
A B C O D E N P
Xét đường tròn (O) có 2 tiếp tuyến NE, NC (E và C là tiếp điểm) => EN = CN (T/c 2 tiếp tuyến giao nhau)
Ta thấy: ^BAC nội tiếp (O), phân giác ^BAC cắt (O) tại điểm thứ hai E => E là điểm chính giữa cung nhỏ BC
=> OE vuông góc với BC. Mà EN vuông góc OE nên EN // BC. Áp dụng ĐL Thales có:
\(\frac{CN}{CD}=\frac{EN}{CD}=\frac{PN}{CP}\)=> \(\frac{CN}{CD}+\frac{CN}{CP}=\frac{PN+CN}{CP}=1\)=> \(\frac{1}{CN}=\frac{1}{CD}+\frac{1}{CP}\)(đpcm).
A B D C M N H O I E F G K J
a) Xét tam giác ADC có MH//AC nên \(\frac{AM}{MD}=\frac{CH}{HD}\) (Định lý Ta-let)
Lại có theo giả thiết \(\frac{AM}{MD}=\frac{CN}{BN}\)
Suy ra \(\frac{CN}{BN}=\frac{CH}{DH}\)
Xét tam giác DBC có \(\frac{CN}{BN}=\frac{CH}{DH}\) nên áp dụng định lý đảo của định lý Talet ta có HN//BD
b) Gọi giao điểm của MH với BD là G; của AC với NH là K, của OH với GK là J.
Trước hết, ta chứng minh GK//MN.
Thật vậy, do HM // AC nên theo định lý Ta let ta có \(\frac{MG}{GH}=\frac{AO}{OC}\)
Do HN//BD (cma) nên \(\frac{KN}{KH}=\frac{OB}{OD}\)
Mà \(\frac{OB}{OD}=\frac{AO}{OC}\Rightarrow\frac{MG}{GH}=\frac{KN}{KH}\)
Theo định lý Ta lét đảo, suy ra GK//MN.
Xét tứ giác OGHK có GO//HK; GH//OK nên OGHK là hình bình hành
Vậy thì J là trung điểm của EK.
Xét tam giác OGK có EF // GK nên ta có :
\(\frac{EI}{GJ}=\frac{FI}{KJ}\Rightarrow\frac{EI}{GJ}=\frac{FI}{GJ}\Rightarrow EI=FI\)
Ta cũng có GK//MN nên :
\(\frac{GJ}{MI}=\frac{KJ}{IN}\Rightarrow MI=NI\Rightarrow ME=NF\)
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
A B C D O M N K H E F I J T P
a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.
Nên tứ giác ACBD là hình vuông.
Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900
=> Tứ giác ACMH nội tiếp đường tròn
Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450
=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.
b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.
Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900
=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE
Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900
Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF
Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)
=> J là trung điểm của HM => Đpcm.
c) Trên tia đối của tia DB lấy T sao cho DT=CM.
Gọi P là hình chiếu của A xuống đoạn MN.
Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT
mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900
=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)
=> ^AMN=^ATN (2 góc tương ứng) hay ^AMP=^ATD
=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).
Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.
Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi
=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.
Vậy...
ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!
- Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
- Đang học tại: Trường THCS Lập Thạch
- Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
- Điểm hỏi đáp: 16SP, 0GP
- Điểm hỏi đáp tuần này: 1SP, 0GP
- Thống kê hỏi đáp