Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài 1 có nhầm chỗ nào không bạn ???
Bài 3 :
( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)
\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)
\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)
Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)
<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b )
B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn
Đề bài sai nhé, tìm GTNN chứ không phải GTLN. Bài này không có GTLN.
Biệt thức \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\) với mọi \(m\). Do đó phương trình đã cho luôn có 2 nghiệm phân biệt.
Theo định lý Vi-et ta có \(x_1+x_2=m-1,x_1x_2=-m^2+m-2\to x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(\to x_1^2+x_2^2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5.\)
Giá trị lớn nhất không tồn tại vì khi m lớn tùy ý thì \(x_1^2+x_2^2\) lớn tùy ý.
Ta có \(3m^2-4m+5=\frac{1}{3}\left(3m-2\right)^2+5-\frac{4}{3}\ge5-\frac{4}{3}=\frac{11}{3}.\) Suy ra \(x_1^2+x_2^2\ge\frac{11}{3}.\) Dấu bằng xảy ra khi và chỉ khi \(m=\frac{2}{3}\). Vậy \(m=\frac{2}{3}\) thì \(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
(d1) đi qua A => thay x = 2 , y = 0 vào hàm số ta có : 0 = 4m + 4n => 4(m+n) = 0 <=> m - n = 0
d1//d2 => a=a' và b khác b' hay 2m = 4 và 4n khác 3 <=> m = 2 => n = -2(t/m đk)
=> m = 2 và n = -2
\(\Delta=4^2-4\left(m+1\right)=16-4m-4=12-4m\)
Để phương trình có 2 nghiệm thì: \(\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)
Với \(m\le3\), theo hệ thức Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)
Vì \(x_1^3+x_2^3< 100\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)< 100\)
\(\Leftrightarrow4\left[14-2m-\left(m+1\right)\right]< 100\)
\(\Leftrightarrow14-2m-m-1< 25\)
\(\Leftrightarrow13-3m< 25\)
\(\Leftrightarrow-3m< 12\Leftrightarrow m>-4\)
Vậy \(-4< m\le3\)
nên các giá trị nguyên của m là -3;-2;-1;0;1;2;3
a, \(x^2-mx+m-1=0\)
Thay m = 4 ta đc :
\(x^2-4x+4-1=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Ta có : \(\Delta=\left(m+3\right)^2-4.\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1\)
\(=\left(m-1\right)^2\)> 0
Pt có 2 nghiệm phân biệt khi \(\left(m-1\right)^2>0\)
\(\Leftrightarrow m\ne1\)(1)
PT có 2 nghiệm phân biệt là :
\(x_1=\frac{m+3+\sqrt{\Delta}}{2}=\frac{m+3+\sqrt{\left(m-1\right)^2}}{2}=\frac{m+3+\left|m-1\right|}{2}\)
Tương tự :\(x_2=\frac{m+3-\left|m-1\right|}{2}\)
Để \(x_1< -1\)
\(\Leftrightarrow\frac{m+3+\left|m-1\right|}{2}< -1\)
\(\Leftrightarrow m+3+\left|m-1\right|< -2\)
Cái này giải bpt thì dễ rồi . Xét khoảng rồi tự làm nha
Với \(x_2< -1\) thì tương tự
Tìm được kết quả rồi so sánh với (1) Khi đó ta sẽ tìm được m
Trả lời
4H2O + NaOH------> OH- + [ Na ( H2O )4 ] +
Cũng không chắc nx
Study well
Trả lời
H2O (nước) + NaOH (natri hidroxit)
= [NA(H2O)4] (Tetraaquasodium ion)