K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Để pt có 2 nghiệm dương phân biệt thì:

\(\left\{\begin{matrix} \Delta=25-4(m-2)>0\\ S=5>0\\ P=m-2>0\end{matrix}\right.\Leftrightarrow 2< m< \frac{33}{4}\)

Khi đó:

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\Leftrightarrow 4(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1x_2}})=9\)

\(\Leftrightarrow 4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

\(\Leftrightarrow 4(5t^2+2t)=9\) với $t=\frac{1}{\sqrt{m-2}}$

$\Rightarrow t=\frac{1}{2}$

$\Leftrightarrow m=6$ (thỏa)

 

30 tháng 5 2021

giải thích tui chỗ này ông ơi

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$

$\Leftrightarrow m^2+10m-7>0(*)$

Áp dụng định lý Viet:

$x_1+x_2=\frac{m+1}{2}$

$x_1x_2=\frac{m-1}{2}$

Khi đó:
$x_1-x_2=x_1x_2$

$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)

Vậy......

22 tháng 5 2021

PT có 2 nghiệm phân biệt
`<=>Delta'>0`
`<=>(m-1)^2-(m+1)>0`
`<=>m^2-2m+1-m-1>0`
`<=>m^2--3m>0`
`<=>m(m-3)>0`
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m-3>0\\\end{cases}\\\begin{cases}m<0\\m-3<0\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m>3\\\end{cases}\\\begin{cases}m<0\\m<3\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}m>3\\m<0\end{array} \right.$
Vậy m>3 or m<0 thì PT có 2 nghiệm phân biệt

28 tháng 5 2021

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)

Để phương trình có nghiệm thì -4m+33>=0

=>-4m>=-33

hay m<=33/4

Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-2\)

=>m-2=50/9

hay m=68/9

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow5^2-2\left(m-2\right)=6\)

=>25-2(m-2)=6

=>2(m-2)=19

=>m-2=19/2

hay m=23/2

d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)

\(\Leftrightarrow25-4\left(m-2\right)=196\)

=>4(m-2)=-171

=>m-1=-171/4

hay m=-163/4

NV
11 tháng 3 2023

a. Em tự giải

b. 

\(\Delta=4-3\left(m+5\right)>0\Rightarrow m< -\dfrac{11}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{3}\\x_1x_2=\dfrac{m+5}{3}\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne-5\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{4}{7}\) \(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{4}{7}\)

\(\Leftrightarrow\dfrac{4}{m+5}=\dfrac{4}{7}\)

\(\Rightarrow m+5=7\)

\(\Rightarrow m=2\) (ktm)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

NV
11 tháng 3 2023

Có cả điều kiện delta lúc đầu nữa em, \(m< -\dfrac{11}{3}\) mà \(m=2>-\dfrac{11}{3}\) nên không thỏa mãn

6 tháng 2 2021

\(\Rightarrow x^2-mx-x+m-2=0\) \(\Rightarrow x^{^2}-x\left(m+1\right)+m-2=0\) 

\(\)\(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2+2m+1-4m+8=m^2-2m+9=\left(m-1\right)^2+8\ge8>0\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt x1, x2

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)

\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)

\(\Leftrightarrow4x^2-8x-17=0\)

\(\Leftrightarrow\left(2x-2\right)^2=21\)

hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)

b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)

\(=4+4m^2+16=4m^2+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt