Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1.2+1/2.3+1/3.4+...+1/49.50
1-1/2+1/2-1/3+/13-1/4+1/4-1/5+1/5-...-1/49+1/49-1/50
1-1/50
50/50-1/50=49/50
E=1/1*2+1/2*3+1/3*4+...+1/49*50
E=1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
E=1-1/50
E=49/50
\(\frac{7}{12}x+0,75=-2\frac{1}{6}=-\frac{13}{6}\)
\(=>\frac{7}{12}x=-\frac{13}{6}-0,75=-\frac{13}{6}-\frac{3}{4}=-\frac{35}{12}\)
\(=>x=-\frac{35}{12}:\frac{7}{12}=-\frac{35}{12}.\frac{12}{7}=-\frac{35}{7}=-5\)
Vậy x=-5
\(-1<\frac{x}{4}<\frac{1}{2}\)
\(<=>-\frac{4}{4}<\frac{x}{4}<\frac{2}{4}\)
<=>-4<x<2
<=>x E {-3;-2;-1;0;1}
Vậy.......................
a) ta có:
\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)
hay \(-1,5\le x\le1,5\)
vì x\(\in Z\) nên ta chọn x=-1,0,1
ta có:
3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)
2S=1-\(\frac{1}{3^9}\)
s=\(\left(1-\frac{1}{3^9}\right):2\)
A=\(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
A=\(\frac{7}{4}.\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\)
A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\right]\)
A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3-4}+\frac{1}{4-5}+\frac{1}{5-6}+\frac{1}{6-7}\right)\right]\)
A=\(\frac{7}{4}.\left[33.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
A=\(\frac{7}{4}.\frac{44}{7}\)
A=11
Like cho mình nha bài này viết mỏi tay lắm
Ta có : \(-\frac{5}{6}+\frac{8}{3}+\frac{29}{-6}=-3\) và \(\frac{1}{2}+2+\frac{5}{2}=5\)
Vậy -3 < x < 5. Do x \(\in\) Z nên x \(\in\) {-2; -1; 0; 1; 2; 3; 4}
\(\frac{-8}{3}+\frac{1}{3}=-\frac{7}{3}\approx-2,3<...<\frac{-2}{7}+\frac{-5}{7}=\frac{-7}{7}=-1\)
Số nguyên có thể điền vào chỗ chấm thỏa mãn điều kiện trên là -2
1/13 . 8/13 + 5/13 . 1/13 - 14/13
= 1/13 . (8/13 + 5/13) - 14/13
= 1/13 . 13/13 - 14/13
= 1/13 . 1 - 14/13
= 1/13 - 14/13
= -13/13
= -1
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2010}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2009}{2010}\)
\(=\frac{1.2.3.4.5....2008.2009}{2.3.4....2009.2010}\)
\(=\frac{1}{2010}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2010}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{2010}{2010}-\frac{1}{2010}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2009}{2010}=\frac{1.2.3....2009}{2.3.4....2010}=\frac{1}{2010}\)
X - (-3/4) = -2/3 - 1/2
X - -3/4 = -4 - 3/6 = -7/6
X = -7/6 + -3/4 = -14/12 + -9/12
X = -23/12
Tổng quát: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\) (với mọi số tự nhiên n khác 0)
Ta có: \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\) (vì \(\frac{1}{100}>0\) )
=>đpcm
\(\frac{9.25-63}{9.10+153}\)=\(\frac{9.25-9.7}{9.10+9.17}\)=\(\frac{9.\left(25-7\right)}{9.\left(10+17\right)}\)=\(\frac{9.18}{9.27}\)=\(\frac{1.2}{1.3}\)=\(\frac{2}{3}\)