Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quát: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\) (với mọi số tự nhiên n khác 0)
Ta có: \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\) (vì \(\frac{1}{100}>0\) )
=>đpcm
\(\frac{9.25-63}{9.10+153}\)=\(\frac{9.25-9.7}{9.10+9.17}\)=\(\frac{9.\left(25-7\right)}{9.\left(10+17\right)}\)=\(\frac{9.18}{9.27}\)=\(\frac{1.2}{1.3}\)=\(\frac{2}{3}\)
ta có
1/1*2+1/2*3+1/3*4+...+1/n*(n+1)=1/1-1/2+1/2-1/3+1/3-...-1/n+1= 33/34 (quy tắc)
1 - 1/n+1=33/34
1/n+1=1/34
nên n =33
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{49.50}\)
\(\Rightarrow\frac{1}{2}A=\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{4}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2}A=\frac{6}{25}\)
\(\Rightarrow A=\frac{6}{25}:\frac{1}{2}=\frac{12}{25}\)
Ta gọi A=1.2+2.3+3.4+...+n.(n+1)
3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+n.(n+1)(n+2-n+1)
=[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=> A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Vậy 1.2+2.3+3.4+...+n(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
a) ta có:
\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)
hay \(-1,5\le x\le1,5\)
vì x\(\in Z\) nên ta chọn x=-1,0,1
ta có:
3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)
2S=1-\(\frac{1}{3^9}\)
s=\(\left(1-\frac{1}{3^9}\right):2\)
\(F=\frac{1+\frac{1.2}{2}+\frac{3.4}{2}+...+\frac{100.101}{2}}{1.2+2.3+...+99.100}\)
\(=\frac{1+1.2+3.4+...+100.101}{\left(1.2+2.3+...+99.100\right).2}\)
Tự làm tiếp nhá !
Q=3{1/1-1/2+1/2-1/3+...+1/4-1/5+1/20-1/21}
=3{1-1/5+1/20-1/21}
=3*337/420
=337/140
1/1.2+1/2.3+1/3.4+...+1/49.50
1-1/2+1/2-1/3+/13-1/4+1/4-1/5+1/5-...-1/49+1/49-1/50
1-1/50
50/50-1/50=49/50
E=1/1*2+1/2*3+1/3*4+...+1/49*50
E=1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
E=1-1/50
E=49/50