Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=\frac{1}{\left(\sqrt{x}+\frac{2016}{\sqrt{x}}\right)^2}\)
Áp dụng bất đẳng thức Côsi cho mẫu số.
2. Thế y theo x từ pt đầu xuống pt sau rồi quy đồng, giải pt bậc 4.
C2: \(pt\left(1\right)-2pt\left(2\right)\Leftrightarrow\left(x-y+5\right)\left(x-y-13\right)=0\)
3. a.
\(\text{ĐK: }2x^2-x=x\left(2x-1\right)\ge0\Leftrightarrow x\le0\text{ hoặc }x\ge\frac{1}{2}\)
Để pt có nghiệm thì \(2x-x^2\ge0\Leftrightarrow x\left(2-x\right)\ge0\Leftrightarrow0\le x\le2\)
Vậy \(\frac{1}{2}\le x\le2\)
\(pt\Leftrightarrow\sqrt{x\left(2x-1\right)}=x\left(2-x\right)\Leftrightarrow\sqrt{2x-1}=\sqrt{x}\left(2-x\right)\text{ (do }x>0\text{)}\)
\(\Leftrightarrow2x-1=x\left(2-x\right)^2\Leftrightarrow\left(x-1\right)\left(x^2-3x-1\right)=0\)
b.
\(\text{ĐK: }......\)
\(\sqrt{2x+1}=a;\text{ }\sqrt[3]{4-3x}=b\text{ }\left(a\ge0\right)\)
\(pt\Leftrightarrow3a-2b=13\Leftrightarrow a=\frac{2b+13}{3}\)
Lại có: \(3a^2+2b^3=3\left(2x+1\right)+2\left(4-3x\right)=11\)
Thay vào: \(3\left(\frac{2b+13}{3}\right)^2+2b^3=11\Leftrightarrow6b^3+4b^2+52b+136=0\)
\(\Leftrightarrow\left(b+2\right)\left(6b^2-8b+68\right)=0\)
a) ĐKXĐ : \(3x+2\ne0\Leftrightarrow x\ne-\frac{2}{3}\)
b) \(5-2x\ne0\Leftrightarrow x\ne\frac{5}{2}\)
c) \(x+4\ne0\Leftrightarrow x\ne-4\)
d) \(2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)
e) Với mọi x là số thực
f) \(\begin{cases}4-x\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow-1\le x\le4\)
mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé
a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)
Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương
\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)
Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)
Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b
a+b=x
ab=1
Rồi tính lần lượt a3 +b3 bằng ẩn x hết
và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra