Bài 1: Cho A = 4x^2/4-x^2 + 2+x/2-x - 2-x/2+x ; B = x-3/2x-x^2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2021

Bài 1 : 

a, \(A=\frac{4x^2}{4-x^2}+\frac{2+x}{2-x}-\frac{2-x}{x+2}\)ĐK : \(x\ne\pm2\)

\(=\frac{4x^2+\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+x^2+4x+4-\left(x^2-4x+4\right)}{\left(2-x\right)\left(x+2\right)}\)

\(=\frac{5x^2+4x+4-x^2+4x-4}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+8x}{\left(2-x\right)\left(x+2\right)}=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}=\frac{4x}{2-x}\)

b, Ta có P = A : B hay \(\frac{4x}{2-x}.\frac{x\left(2-x\right)}{x-3}=\frac{4x^2}{x-3}< 0\)

\(\Rightarrow x-3< 0\)do \(4x^2\ge0\forall x\)

\(\Leftrightarrow x< 3\)

Kết hợp với giả thiết ta có : \(x< 3;x\ne\pm2\)

9 tháng 4 2021

quên mất, Với P = -1 hay \(\frac{4x^2}{x-3}=-1\Rightarrow4x^2=-x+3\Leftrightarrow4x^2+x-3=0\)

\(\Leftrightarrow4x^2+4x-3x-3=0\Leftrightarrow4x\left(x+1\right)-3\left(x+1\right)=0\)

\(\Leftrightarrow\left(4x-3\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-1\end{cases}}\)

Vậy với P = -1 thì x = -1 ; x = 3/4 

Bài 2 : 

a, \(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)ĐK : \(x\ne\pm3\)

\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}=\left(\frac{-3}{x+3}\right).\frac{x+3}{3x^2}=\frac{-1}{x^2}\)

b, Ta có : \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

TH1 : Thay x = 1 vào biểu thức trên ta được : \(\frac{-1}{1}=-1\)tương tự với 1 

TH2 : ... 

c, Ta có : A < -1 hay \(\frac{-1}{x^2}< 1\Leftrightarrow\frac{-1}{x^2}-1< 0\Leftrightarrow\frac{-1-x^2}{x^2}< 0\)

\(\Rightarrow-\left(x^2+1\right)< 0\)do \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2< -1\)( vô lí )

Vậy ko có giá trị x thỏa mãn A < -1 

d, Ta có : \(A=\frac{x}{8}\)hay \(-\frac{1}{x^2}=\frac{x}{8}\Rightarrow x^3=-8\Leftrightarrow x=-2\)

Vậy với A = x/8 thì x = -2 

20 tháng 2 2021

\(P=\frac{x^2+x}{x^2-2x+1}\div\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\div\left(\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\div\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\div\frac{x+1}{x\left(x-1\right)}=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\times\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)

b) Để P = -1/2 thì \(\frac{x^2}{x-1}=-\frac{1}{2}\)

=> 2x2 = -x + 1 

<=> 2x2 + x - 1 = 0

<=> 2x2 - x + 2x - 1 = 0

<=> x( 2x - 1 ) + ( 2x - 1 ) = 0

<=> ( 2x - 1 )( x + 1 ) = 0

<=> x = 1/2 hoặc x = -1 ( tm )

Vậy với x = 1/2 hoặc x = -1 thì P = -1/2

c) Dự đoán MinP và đẳng thức xảy ra khi nào rồi nhưng chưa biết làm .____.

20 tháng 2 2021

min p bằng bao nhiêu 

6 tháng 3 2021

\(x^2-\left(x+3\right)\left(3x+1\right)=\)\(9\)

\(\Leftrightarrow x^2-9-\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3-3x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-2x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\-2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\-2x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)

Vậy phương trình có tập nghiệm \(S=\left\{-3;-2\right\}\)

6 tháng 3 2021

\(x^3+4x+5=0\)

\(\Leftrightarrow\left(x^3+1\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2=\frac{-19}{4}\left(vn\right)\end{cases}}\)(vn: vô nghiệm).\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất : \(x=-1\)

29 tháng 5 2021

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x^2-4+10-x^2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(=\left(\frac{-6}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{6}{\left(x-2\right)\left(x+2\right)}\right)=-1\)

Vậy với mọi giá trị của x thì A nguyên 

25 tháng 7 2021

\(1,a,A=\frac{356^2-144^2}{256^2-244^2}=\frac{\left(356-144\right)\left(356+144\right)}{\left(256-244\right)\left(256+244\right)}=\frac{212.500}{12.500}\)

\(A=\frac{212}{12}=\frac{53}{3}\)

\(b,B=253^2+94.253+47^2\)

\(B=\left(253+47\right)^2=300^2=90000\)

Bài 2

\(a,x^2-16x=-64\)

\(x^2-16x+64=0\)

\(\left(x-8\right)^2=0\)

\(x=8\)

\(b,\left(x+2\right)^2+4\left(x+2\right)+2=0\)

\(x^2+4x+4+4x+8+2=0\)

\(x^2+8x+14=0\)

\(\sqrt{\Delta}=\sqrt{\left(8^2\right)-\left(4.1.14\right)}=2\sqrt{3}\)

\(x_1=\frac{2\sqrt{3}-8}{2}=\sqrt{3}-4\)

\(x_2=\frac{-2\sqrt{3}-8}{2}=-\sqrt{3}-4\)

1 tháng 3 2022

`Answer:`

undefined

6 tháng 4 2021

a, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\Leftrightarrow\frac{35x-5}{30}+\frac{60x}{30}=\frac{96-6x}{30}\)

\(\Rightarrow35x-5+60x=96-6x\Leftrightarrow101x=101\Leftrightarrow x=1\)

Vậy tập nghiệm của phương trình là S = { 1 } 

b, tương tự a 

c, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

\(\Leftrightarrow\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\ne0\right)=0\Leftrightarrow x=23\)

Vậy tập nghiệm của phương trình là S = { 23 } 

d, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\right)=0\Leftrightarrow x=-2005\)

Vậy tập nghiệm của phương trình là S = { -2005 } 

e, tương tự d