Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-3x^2+2=x^3-2x^2-2x-\left(x^2-2x-2\right)\)
\(=x.\left(x^2-2x-2\right)-\left(x^2-2x-2\right)\)
\(=\left(x-1\right).\left(x^2-2x-2\right)\)
\(1,x^3-3x^2+2=0\)
\(x^3-x^2-2x^2+2=0\)
\(x^2\left(x-1\right)-2\left(x^2-1\right)=0\)
\(\left(x-1\right)\left(x^2-2x-2\right)=0\)
a, \(9-x^2+2xy-y^2\)
\(=9-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
b, \(x^4-x^2+4x-4\)
\(=x^4-\left(x-2\right)^2\)
\(=\left(x^2-x+2\right)\left(x^2+x-2\right)\)
\(=\left(x^2-x+2\right)\left(x^2+2x-x-2\right)\)
\(=\left(x^2-x+2\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2-x+2\right)\)
c, \(x^3-2x^2y+xy^2\)
\(=x^3-x^2y-x^2y+xy^2\)
\(=x^2\left(x-y\right)-xy\left(x-y\right)\)
\(=\left(x^2-xy\right)\left(x-y\right)\)
\(=x\left(x-y\right)^2\)
d, \(1-x^2-2xz-z^2\)
\(=1-\left(x+z\right)^2\)
\(=\left(1-x-z\right)\left(1+x+z\right)\)
A)
\(9-x^2+2xy-y^2=3^2-\left(x-y\right)^2\\ =\left(x-y+3\right)\left(3-x+y\right)\)
B)
\(x^4-x^2+4x-4=\left(x^2\right)^2-\left(x-2\right)^2\\ =\left(x^2+x-2\right)\left(x^2-x+2\right)\\ =\left(x^2-x+2x-2\right)\left(x^2+x-2x-2\right)\\ =\left(x-1\right)\left(x+2\right)\left(x+1\right)\left(x-2\right)\)
C)
\(x^3-2x^2y+xy^2\\ =x\left(x^2-2xy+y^2\right)\\ =x\left(x-y\right)^2\)
D)
\(1-x^2-2xz-z^2\\ =1^2-\left(x+z\right)^2\\ =\left(1+x+z\right)\left(1-x-z\right)\)
\(a,x^2-5x\)
\(=x\left(x-5\right)\)
\(b,5x\left(x+5\right)+4x+20\)
\(=5x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(5x+4\right)\left(x+5\right)\)
\(c,7x\left(2x-1\right)-4x+2\)
\(=7x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(7x-2\right)-\left(2x-1\right)\)
\(d,x^2-16+2\left(x+4\right)\)
\(=x^2-16+2x+8\)
\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) )
\(e,x^2-10x+9\)
\(=x^2-x-9x+9\)
\(=x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé )
\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)
\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)
Vậy ...
Bài 1:
\(36\left(x-5\right)^2-25\left(x-y+4\right)^2\)
\(=\left[6\left(x-5\right)\right]^2-\left[5\left(x-y+4\right)\right]^2\)
\(=\left[6\left(x-5\right)-5\left(x-y+4\right)\right]\left[6\left(x-5\right)+5\left(x-y+4\right)\right]\)
\(=\left(x+5y-50\right)\left(11x-5y-10\right)\)
Bài 2:
a) \(\left(4x-1\right)^2-4x+1=0\)
\(\left(4x-1\right)^2-\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(4x-1-1\right)=0\)
\(\left(4x-1\right)\left(4x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\frac{1}{2}\end{cases}}}\)
b) \(\left(3x\right)^2-\left(3x-1\right)^2=0\)
\(\left(3x-3x+1\right)\left(3x+3x-1\right)=0\)
\(6x-1=0\)
\(x=\frac{1}{6}\)
c) \(36x^2-25-\left(6x+5\right)\left(6x-5\right)=0\)
\(36x^2-25-36x^2+25=0\)
\(0=0\)( đúng với mọi x )
Bài 3 : xem lại đề
a) x2 + 3x - 18 = 0
⇔ x2 - 3x + 6x - 18 = 0
⇔ x( x - 3 ) + 6( x - 3 ) = 0
⇔ ( x - 3 )( x + 6 ) = 0
⇔ x - 3 = 0 hoặc x + 6 = 0
⇔ x = 3 hoặc x = -6
b) x3 - x2 - 4 = 0
⇔ x3 - 2x2 + x2 - 4 = 0
⇔ x2( x - 2 ) + ( x - 2 )( x + 2 ) = 0
⇔ ( x - 2 )( x2 + x + 2 ) = 0
⇔ x - 2 = 0 hoặc x2 + x + 2 = 0
⇔ x = 2 < do x2 + x + 2 = ( x2 + x + 1/4 ) + 7/4 = ( x + 1/2 )2 + 7/4 ≥ 7/4 > 0 ∀ x
b) x3 - 6x2 - x + 30 = 0
⇔ x3 - 5x2 - x2 + 5x - 6x + 30 = 0
⇔ x2( x - 5 ) - x( x - 5 ) - 6( x - 5 ) = 0
⇔ ( x - 5 )( x2 - x - 6 ) = 0
⇔ ( x - 5 )( x2 - 3x + 2x - 6 ) = 0
⇔ ( x - 5 )[ x( x - 3 ) + 2( x - 3 ) ] = 0
⇔ ( x - 5 )( x - 3 )( x + 2 ) = 0
⇔ x - 5 = 0 hoặc x - 3 = 0 hoặc x + 2 = 0
⇔ x = 5 hoặc x = 3 hoặc x = -2
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
`Answer:`