Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^4+1=\left(x^8+\frac{2.3x^4}{2}+\frac{9}{4}\right)-\frac{5}{4}\)
\(=\left(x^4+\frac{3}{2}\right)^2-\frac{5}{4}=\left(x^4+\frac{3-\sqrt{5}}{2}\right)\left(x^4+\frac{3+\sqrt{5}}{2}\right)\)
Gọi quãng đường từ xã KN tới KA là x (x > 0)
Thời gian lúc đi là : x/15 (h)
Thời gian lúc về là: x/12 (h)
Thời gian lúc về nhiều hơn lúc đi là: 45' = 3/4 (h)
Ta có phương trình: \(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{3}{4}\Leftrightarrow5x-4x=45\Leftrightarrow x=45\left(km\right)\)
Vậy quãng đường từ xã KN đến KA dài 45km.
Gọi:
Độ dài quãng đường từ Kỳ Ninh tới Kỳ Anh là: S (km) với S nguyên dương.
Thời gian lúc đi là: \(\dfrac{S}{15}\) (h).
Thời gian lúc về là: \(\dfrac{S}{12}\) (h).
Theo đề bài, ta có:
\(\dfrac{S}{12}\) - \(\dfrac{S}{15}\)= \(\dfrac{45}{60}\)=\(\dfrac{3}{4}\)
=> \(\dfrac{S}{60}\)=\(\dfrac{3}{4}\)
=> S= \(\dfrac{3.60}{4}\)=45
vậy độ dài quãng đường từ Kỳ Ninh đến Kỳ Anh là 45 km.
a, MA= 2.29=58(g/mol)
cái này hình như thiếu đề ? chỉ có vầy sao giải dc ?
b, 3Fe + 2O2 -> Fe3O4 (1)
S + O2 -> SO2 (2)
nFe=11,2 : 56 = 0,2 ( mol )
Theo (1) , nFe3O4=\(\dfrac{0,2}{3}\)(mol ) ->mFe3O4=232/15 (g)
ns= 5,6 : 32 = 0,175 ( mol)
Theo (2) , ns=nSO2=0,175( mol ) -> mSO2=11,2 g
Bài 1 câu g bạn kia làm sai mình sửa lại nhá
\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2\right)-12c^2\)
\(=3\left(a-b\right)^2-12c^2\)
\(=3\left[\left(a-b\right)^2-4c^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Để mình làm tiếp cho :))
Bài 2 :
Câu a : \(37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5\)
\(=\left(37,5.8,5+1,5.37,5\right)-\left(7,5.3,4+6,6.7,5\right)\)
\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)
\(=37,5.10-7,5.10\)
\(=10.30=300\)
Câu b : \(35^2+40^2-25^2+80.35\)
\(=\left(35^2+80.35+40^2\right)-25^2\)
\(=\left(30+45\right)^2-25^2\)
\(=75^2-25^2\)
\(=\left(75+25\right)\left(75-25\right)\)
\(=100.50=5000\)
Bài 3 :
Câu a : \(x^3-\dfrac{1}{9}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{9}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{3}\end{matrix}\right.\)
Câu b : \(2x-2y-x^2+2xy-y^2=0\)
\(\Leftrightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2-x+y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=2\Rightarrow x=2-y\end{matrix}\right.\)
Câu c :
\(x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(x^2\left(x-3\right)+27-9x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-9\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\pm3\end{matrix}\right.\)
Bài 4 :
Câu a :
\(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=\left(x^2-x\right)-\left(3x-3\right)\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
Câu b :
\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
Câu c :
\(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
Câu d :
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(a\text{)}.\:\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\\ =x^4+4x^2+4-\left(x^2-4\right)\left(x^2+4\right)\\ =x^4+4x^2+4-x^4+16\\ =4x^2+20\)
\(b\text{)}.\:\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\\ =\left(x+1+x-1\right)\left(x+1-x+1\right)-3\left(x^2-1\right)\\ =4x-3x^2+3\)
Bài 1:
a: \(P=\left(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)
\(=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)
\(=\dfrac{-2x}{1}\cdot\dfrac{x-1}{4}=-\dfrac{x\left(x-1\right)}{2}\)
b: Để \(\dfrac{P-4}{5}=x\) thì P-4=5x
=>P=5x+4
\(\Leftrightarrow-\dfrac{x\left(x-1\right)}{2}=5x+4\)
=>-x2+x=10x+8
=>x2-x=-10x-8
=>x2+9x+8=0
=>x=-8(nhận) hoặc x=-1(loại)
\(4-x=x-12\).
\(\Leftrightarrow-x-x=-12-4\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=\left(-16\right):\left(-8\right)\)
\(\Leftrightarrow x=8\)
Vậy phương trình cón nghiệm duy nhất: \(x=8\).