K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

GTLN của a+b=100+1=101

GTLN của a + b = 100 + 1 = 101

Đảm bảo 100%

nha

NV
26 tháng 2 2021

\(\left(a-b\right)^2\ge0\Leftrightarrow\left(a+b\right)^2\ge4ab=400\)

\(\Rightarrow a+b\ge20\)

Dấu "=" xảy ra khi \(a=b=10\)

\(ab=100\Leftrightarrow b=\frac{100}{a}\)

\(T=a+b=a+\frac{100}{a}=\left(a-100\right)+\frac{100}{a}-1+101\)

\(=\left(a-100\right)+\frac{100-a}{a}+101=\left(a-100\right)\left(1-\frac{1}{a}\right)+101\)

Với \(1\le a\le100\Rightarrow\hept{\begin{cases}a-100\le0\\1-\frac{1}{a}\ge0\end{cases}\Rightarrow\left(a-100\right)\left(1-\frac{1}{a}\right)\le0\Rightarrow T\le101}\)

Vậy GTLN của a+b là 101 khi a=100, b=1 hoặc a=1, b=100

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

16 tháng 5 2020

ddd

*) Nếu a,b đều ko chia hết cho 3 ⇒a2+b2≡2(mod3)⇒a2+b2≡2(mod3)

Nên c2≡2(mod3)c2≡2(mod3) (Vô lí) 

Nên Tồn tại ab⋮3ab⋮3

*) Nếu a,b đều ko chia hết cho 4, tương tự như trên ⇒ab⋮4⇒ab⋮4

Vậy từ 2 TH trên có đpcmcdvm

2 tháng 8 2017

lên mạng mà kiếm

2 tháng 8 2017

mình không thấy bạn ơi

28 tháng 2 2021

Ta có: 2010 = 2.3.5.67

=> (a,b) = (1,2010;2,1005;3,670;5,402;6,335;10,201;15,134;30,67)

Nhỏ nhất khi a - b = 67 - 30 = 37

AH
Akai Haruma
Giáo viên
16 tháng 4 2023

Lời giải:
Áp dụng BĐT Cô-si:

$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$

$b^2+c^2\geq 2bc$

$c^2+a^2\geq 2ac$

Cộng theo vế các BĐT trên ta được:

$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$

$\Rightarrow ab+bc+ac\leq a^2+b^2+c^2=27$

Vậy GTLN của $P$ là $27$
 

27 tháng 4 2019

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right).\)(áp dụng bất đẳng thức bunhiacopxki)

\(\Leftrightarrow\left(a+b+c\right)^2\le3.64\Rightarrow\left(a+b+c\right)\le8\sqrt{3}\)

Lại có \(\left(ab+bc+ac\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\)(bất đẳng thức bunhiacopxki)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2=64\)

Khi đó \(P=ab+bc+ca+a+b+c\le64+8\sqrt{3}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c\\a^2+b^2+c^2=64\end{cases}\Leftrightarrow}a=b=c=\frac{8\sqrt{3}}{3}\)