K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

đặt \(\sqrt{x^2+1}=a\left(a\ge0\right)\)

\(\Leftrightarrow a^2=x^2+1\)

khi đó ta có:

\(a^2+4x=\left(x+4\right)a\) \(\Leftrightarrow a^2-4a+4x-ax=0\)

\(\Leftrightarrow\left(a-x\right)\left(a-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\a=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x\\\sqrt{x^2+1}=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2\left(đk:x\ge0\right)\\x^2+1=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0=1\left(vl\right)\\x=\pm\sqrt{15}\end{matrix}\right.\)

vậy x=15 hoặc x=-15 là nghiệm của pt

1 tháng 3 2020

ĐKXĐ : \(x^2+1\ge0\) ( luôn đúng \(\forall x\) )

- Ta có : \(x^2+4x+1=\left(x+4\right)\sqrt{x^2+1}\)

- Đặt \(a=\sqrt{x^2+1}\left(a\ge0\right)\) ta được phương trình :

\(a^2+4x=a\left(x+4\right)\)

=> \(a^2+4x=ax+4a\)

=> \(a^2+4x-ax-4a=0\)

=> \(a\left(a-x\right)-4\left(a-x\right)\)

=> \(\left(a-x\right)\left(a-4\right)=0\)

=> \(\left[{}\begin{matrix}a-x=0\\a-4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=x\\a=4\end{matrix}\right.\) ( TM )

- Thay lại \(a=\sqrt{x^2+1}\) vào phương trình trên ta được :

=> \(\left[{}\begin{matrix}\sqrt{x^2+1}=x\\\sqrt{x^2+1}=4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+1=x^2\\x^2+1=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}0=1\left(VL\right)\\x^2=16-1=15\end{matrix}\right.\)

=> \(x=\pm\sqrt{15}\left(TM\right)\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{-\sqrt{15},\sqrt{15}\right\}\)

NV
26 tháng 11 2021

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

NV
26 tháng 11 2021

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

4 tháng 9 2016

Ptrình này vô nghiệm bn ạ

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

16 tháng 3 2017

gợi ý nè

1) \(ab+c=ab+c\left(a+b+c\right)\)....

2) nhiều cách lắm nhưng tớ chỉ đưa ra 2 cách ...có vẻ hay

đặt \(\sqrt{x}=a,\sqrt{y}=b\)

=>a3+b3=a4+b4=a5+b5

c1: ta có: \(\left(a^3+b^3\right)\left(a^5+b^5\right)=\left(a^4+b^4\right)^2\)......

c2: a5+b5=(a+b)(a4+b4)-ab(a3+b3)

=> 1=(a+b)-ab .......

3) try use UCT

4) tính sau =))

17 tháng 3 2017

gợi ý ??

17 tháng 8 2015

a/ x= \(\sqrt{3}-2\)

b/ ko tồn tại nghiệm số thực

x \(\in\phi\)

6 tháng 9 2020

a)\(\sqrt{\left(x^2-4x+1\right)}-2=2x\)

\(\Leftrightarrow\sqrt{\left(x^2-4x+1\right)}=2x+2\)

ĐKXĐ : \(2x+2\ge0\Leftrightarrow x\ge-1\)

Bình phương hai vế

\(\Leftrightarrow x^2-4x+1=\left(2x+2\right)^2\)

\(\Leftrightarrow x^2-4x+1=4x^2+8x+4\)

\(\Leftrightarrow4x^2+8x+4-x^2+4x-1=0\)

\(\Leftrightarrow3x^2+12x+3=0\)(*)

\(\Delta=b^2-4ac=\left(12\right)^2-4\cdot3\cdot3=144-36=108\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-12+\sqrt{108}}{6}=-2+\sqrt{3}=\sqrt{3}-2\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-12-\sqrt{108}}{6}=-2-\sqrt{3}=-\sqrt{3}-2\end{cases}}\)

Đối chiếu với ĐKXĐ ta thấy \(\sqrt{3}-2\)tmđk

Vậy phương trình có nghiệm duy nhất là x = \(\sqrt{3}-2\)

b) \(\sqrt{\left(4-x+2x^2\right)}=x-3\)

ĐKXĐ : \(x-3\ge0\Leftrightarrow x\ge3\)

Bình phương hai vế

\(\Leftrightarrow2x^2-x+4=\left(x-3\right)^2\)

\(\Leftrightarrow2x^2-x+4=x^2-6x+9\)

\(\Leftrightarrow2x^2-x+4-x^2+6x-9=0\)

\(\Leftrightarrow x^2+5x-5=0\)(*)

\(\Delta=b^2-4ac=5^2-4\cdot1\cdot\left(-5\right)=25+20=45\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-5+\sqrt{45}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-5-\sqrt{45}}{2}\end{cases}}\)

Đối chiếu với ĐKXĐ ta thấy hai nghiệm không thỏa mãn

Vậy phương trình vô nghiệm

31 tháng 8 2016

ko biết

31 tháng 8 2016

Bài quá dễ tự làm đi 

k mình mình giải cho