Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x,y nguyên => x+4; y-8 nguyên
=> x+4; y-8\(\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
ta có bảng
x+4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -10 | -7 | -6 | -5 | -3 | -2 | -1 | 2 |
y-8 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | 7 | 6 | 5 | 2 | 14 | 11 | 10 | 9 |
Vậy (x;y)={(-10;7);(-7;6);(-6;5);(-5;2);(-3;14);(-2;11);(-1;10);(2;9)}
b) 2x+xy+3y+6=10
<=> x(2+y)+3(y+2)=10
<=> (y+2)(x+3)=10
x,y nguyên => y+2; x+3 nguyên
=> y+2; x+3\(\in\)Ư(10)={-10;-5;-2;-1;1;2;5;10}
ta có bảng
x+3 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -13 | -8 | -5 | -4 | -2 | -1 | 2 | 7 |
y+2 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
y | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
\(\left\{{}\begin{matrix}x^2+y+xy\left(x^2+y\right)+xy=-\frac{5}{4}\\x^4+y^2+2x^2y+xy=-\frac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)\left(xy+1\right)+xy=-\frac{5}{4}\\\left(x^2+y\right)^2+xy=-\frac{5}{4}\end{matrix}\right.\)
Trừ vế cho vế: \(\left(x^2+y\right)\left(x^2+y-xy-1\right)=0\)
\(\Leftrightarrow\left(x^2+y\right)\left(x-1\right)\left(x+1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+1\\y=-x^2\end{matrix}\right.\) thế vào pt đầu và giải bt
Coi phương trình là ẩn \(x\) với tham số y:
\(2x^2+\left(4-y\right)x-3y^2-y-5=0\) (1)
\(\Delta=\left(4-y\right)^2+8\left(3y^2+y+5\right)=25y^2+56=\left(5y\right)^2+56\)
Để phương trình có nghiệm nguyên theo \(x\) thì \(\Delta\) phải là số chính phương với \(y\) nguyên. Đặt \(\Delta=k^2\) (\(k\in Z\)) ta được:
\(\left(5y\right)^2+56=k^2\Leftrightarrow k^2-\left(5y\right)^2=56\)
\(\Leftrightarrow\left(k-5y\right)\left(k+5y\right)=56\)
Giải hết các trường hợp ra bạn sẽ tìm được \(y\), sau đó thay vào (1) sẽ ra \(x\)
Ví dụ: \(\left\{{}\begin{matrix}k-5y=-56\\k+5y=-1\end{matrix}\right.\) \(\Rightarrow\) y ko nguyên (loại)
\(\left\{{}\begin{matrix}k-5y=-14\\k+5y=-4\end{matrix}\right.\) \(\Rightarrow y=1\Rightarrow\) \(2x^2+3x-9=0\Rightarrow x=-3\)
//Do 56 có quá nhiều cặp ước, bạn chịu khó tự làm hết :D
\(\Leftrightarrow3y=2\left(7-x\right)\)
\(\Leftrightarrow y=\dfrac{2\left(7-x\right)}{3}\)
Do 2 và 3 nguyên tố cùng nhau \(\Rightarrow7-x⋮3\)
\(\Rightarrow7-x=\left\{3;6\right\}\Rightarrow\left(x;y\right)=\left(1;4\right);\left(4;2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y+1\right)\left(xy+1\right)=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)
\(\Rightarrow\left(x^2-y+1\right)\left(xy+1\right)-\left(x^2-y\right)^2-\left(xy+1\right)=0\)
\(\Leftrightarrow\left(xy+1\right)\left(x^2-y\right)-\left(x^2-y\right)^2=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=x^2\\xy+1=x^2-y\end{matrix}\right.\) thay xuống pt dưới:
- Với \(y=x^2\) thay xuống pt dưới \(\Rightarrow x^3=1\)
- Với \(xy+1=x^2-y\) thay xuống dưới:
\(\left\{{}\begin{matrix}xy+1=x^2-y\\2\left(xy+1\right)=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy+1=x^2-y\\xy=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0;y=-1\\y=0;x^2=1\end{matrix}\right.\)
b, Ta có : \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y-4=0\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y=4\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y=x+2y\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y-x-2y=0\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+x-7y=0\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x^2+2xy+3y^2+1,5xy-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x\left(x+2y\right)+1,5y\left(x+2y\right)-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}4x+6y-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x-y-4,5xy=0\\x+2y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5\left(4-2y\right)-y-4,5y\left(4-2y\right)=0\\x=4-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}20-10y-y-18y+9y^2=0\\x=4-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}20-29y+9y^2=0\\x=4-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}9y^2-9y-20y+20=0\\x=4-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left(9y-20\right)\left(y-1\right)=0\\x=4-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=1\\y=\frac{20}{9}\end{matrix}\right.\\x=4-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=1\\y=\frac{20}{9}\end{matrix}\right.\\\left[{}\begin{matrix}x=4-2.1=4-2=2\\x=4-\frac{2.20}{9}=-\frac{4}{9}\end{matrix}\right.\end{matrix}\right.\)
Vậy phương trình có 2 nghiệm ( x; y ) = \(\left(2;1\right)\), ( x; y ) = \(\left(-\frac{4}{9};\frac{20}{9}\right)\)
a, Ta có : \(\left\{{}\begin{matrix}2x-y=5\\x^2+xy+y^2=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=2x-5\\x^2+x\left(2x-5\right)+\left(2x-5\right)^2=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=2x-5\\x^2+2x^2-5x+4x^2-20x+25=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=2x-5\\7x^2-25x+18=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=2x-5\\7x^2-7x-18x+18=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=2x-5\\\left(7x-18\right)\left(x-1\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=2x-5\\\left[{}\begin{matrix}x=1\\x=\frac{18}{7}\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=2.1-5=2-5=-3\\y=2.\left(\frac{18}{7}\right)-5=\frac{1}{7}\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=\frac{18}{7}\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình trên có 2 nghiệm là ( x; y ) = ( 1; -3 ) , ( x; y ) \(=\left(\frac{18}{7};\frac{1}{7}\right)\)
Thử sức xíu :3
\(17x-39y=4\Leftrightarrow x=\frac{4+39y}{17}\)
Để \(x\in Z\Leftrightarrow\frac{4+39y}{17}\in Z\Leftrightarrow2y+\frac{5y+4}{17}\in Z\)
\(\Leftrightarrow\left(4+5y\right)⋮17\)
do x,y nguyên: \(4+5y=17k\left(k\in Z\right)\)
\(\Leftrightarrow y=\frac{17k-4}{5}=\frac{17}{5}k-\frac{4}{5}\)
Làm tương tự để tìm x
P/s: chưa lm dạng này bao h nên có j sai sót mong bỏ qua, đa tạ :3
\(xy-2x-3y+6=10\)
\(\Leftrightarrow x\left(y-2\right)-3\left(y-2\right)=10\)
\(\Leftrightarrow\left(x-3\right)\left(y-2\right)=10\)
Bây giờ chỉ cần xét các cặp ước \(\left(10;1\right);\left(1;10\right);\left(2;5\right);\left(5;2\right)\) \(\left(-10;-1\right);\left(-1;-10\right);\left(-5;-2\right);\left(-2;-5\right)\)
Nhiều quá bạn tự xét