\(\Delta ANL\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Giải:

a) \(\Delta ALC\) vuông tại \(L\) ta có:

\(\cos A=\dfrac{AL}{AC}\left(1\right)\)

\(\Delta ANB\) vuông tại \(N\) ta có:

\(\cos A=\dfrac{AN}{AB}\left(2\right)\) Hay \(AN=AB.\cos A\left(3\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{AL}{AC}=\dfrac{AN}{AB}\\\text{A: chung}\end{matrix}\right.\)

\(\Rightarrow\Delta ANL\) đồng dạng với \(\Delta ABC\left(c-g-c\right)\) (Đpcm)

b) \(\Delta BLC\) vuông tại \(L\) ta có:

\(BL=BC.\cos B\left(4\right)\)

\(\Delta AMC\) vuông tại \(M\) ta có:

\(CM=AC.\cos C\left(5\right)\)

Từ \(\left(3\right);\left(4\right)\)\(\left(5\right)\) suy ra:

\(AN.BL.CM=AB.\cos A.BC.\cos B.CA.\cos C\)

Hay \(AN.BL.CM=AB.BC.CA.\cos A.\cos B.\cos C\) (Đpcm)

31 tháng 5 2017

Ôn tập Hệ thức lượng trong tam giác vuông

19 tháng 7 2017

A B C L N M

1, 2  tam giac vuong ANB  va tam giac  ALC co goc A chung   nen  2 tam giac nay dong dang 

\(\Rightarrow\frac{AN}{AB}=\frac{AL}{AC}\)

 vi vay \(\Delta ANL~\Delta ABC\)

2, ta co \(AN=\cos A\cdot AB\) \(BL=\cos\cdot BC\) \(CM=\cos C\cdot AC\)

\(\Rightarrow AN\cdot BL\cdot CM=\cos A\cdot\cos B\cdot\cos C\cdot AB\cdot AC\cdot BC\)

hay\(\frac{AN\cdot BL\cdot CM}{AB\cdot BC\cdot CA}=\cos A\cdot\cos B\cdot\cos C\)

9 tháng 7 2017

A B C D E O H F

a) Tự chứng minh 

b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.

Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)

tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)

\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)

hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)

A B C M 2cm 2cm 2cm

a) Vì AM là trung tuyến của \(\Delta ABC\)tại A \(\Rightarrow MB=MC\)

Vì \(\Delta ABM\)là tam giác đều có cạnh là 2cm\(\Rightarrow AB=AM=BM=2cm\)

Do đó độ dài cạnh BC là : \(2+2=4cm\)

Áp dụng định lý Py-ta-go trong tam giác vuông ABC ta được :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC^2=4^2-2^2=16-4=12\)

\(\Rightarrow AC=\sqrt{12}\left(cm\right)\)

b) Diện tích \(\Delta ABC\)là : \(\frac{1}{2}\left(AB.AC\right)=\frac{2.\sqrt{12}}{2}=\sqrt{12}\left(cm^2\right)\)

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm