Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Hình:
A B C H M
~~~
a/Ta có: \(\widehat{C}=90^o-\widehat{B}=90^o-30^o=60^o\)
Theo tỉ số lượng giác có:
\(sin\widehat{B}=\dfrac{AC}{BC}\)\(\Rightarrow BC=\dfrac{AC}{sin\widehat{B}}=\dfrac{6}{sin30^o}=12\left(cm\right)\)
Áp dụng pitago vào tam giác ABC v tại A có: BC2 = AB2 + AC2
hay 122 = AB2 + 62
=> AB2 = 122 - 62 = 108
=> AB = \(6\sqrt{3}\approx10,4\left(cm\right)\)
b/ Có: AH _|_ BC
Theo hệ thức lượng có:
AB2 = BC . BH
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{10,4^2}{12}\approx9\left(cm\right)\)
AM là trung truyến của t/g ABC => AM = 1/2BC = 6(cm)
=> HM = BH - BM = 9 - 6 = 3(cm)
xét tam giác AHM có góc H = 90o, theo pitago có:
\(AM^2=AH^2+HM^2\Rightarrow AH^2=AM^2-HM^2=6^2-3^2=27\Rightarrow AH\approx5,2\left(cm\right)\)
=> \(S_{\Delta AHM}=\dfrac{1}{2}\cdot HM\cdot AH=\dfrac{1}{2}\cdot3\cdot5,2=7,8\left(cm^2\right)\)
nốt bài 2.........
A B C D H
~~~
a, theo tỉ số lg giác có:
\(sinC=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{sinC}=\dfrac{10}{sin40^o}\approx15,6\left(cm\right)\)
b, A/dung pitago vào t/g ABC v tại A
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{15,6^2-10^2}\approx12\left(cm\right)\)
vì AD là p/g góc A nên:
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{AD+CD}{AB+AC}=\dfrac{BC}{10+12}=\dfrac{15,6}{22}=\dfrac{39}{55}\Rightarrow BD=\dfrac{39}{55}\cdot AB=\dfrac{39}{55}\cdot10\approx7,1\left(cm\right)\)
kẻ AH _|_ BC:
a/d hệ thức lượng có:
\(\left\{{}\begin{matrix}AB^2=BC\cdot BH\\BC\cdot AH=AB\cdot AC\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{10^2}{15,6}\approx6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=\dfrac{10\cdot12}{15,6}\approx7,69\left(cm\right)\end{matrix}\right.\)
Ta có: HD = BD - BH = 7,1 - 6,4 = 0,7(cm)
A/dung pitago vào tam giác AHD v tại H có:
\(AD^2=AH^2+HD^2=7,69^2+0,7^2=59,78\Rightarrow AD\approx7,72\left(cm\right)\)
1)
gọi I là giao điểm của BD và CE
ta có E là trung điểm cua AB nên EB bằng 3 cm
xét △EBI có \(\widehat{I}\)=900 có
EB2 = EI2 + BI2 =32=9 (1)
tương tự IC2 + DI2 = 16 (2)
lấy (1) + (2) ta được
EI2+DI2+BI2+IC2=25
⇔ ED2+BC2=25
xét △ABC có E là trung điểm của AB và D là trung điểm của AC
⇒ ED là đường trung bình của tam giác
⇒ 2ED =BC
⇔ ED2=14BC2
⇒ 14BC2+BC2=25
⇔ 54BC2=25
⇔ BC2=20BC2=20
⇔ BC=√20
Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)
\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)
Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)
Mà: AH2=BH.CH
=> AH2.AH2=BH.CH.AH2
<=> AH4=20736
=> AH=12cm
=> BH=9cm ; CH=16cm
Vậy BC=25cm
A B C E F H M K I
A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH;BC=\frac{AB.AC}{AH}=\frac{AB.5AH}{3.AH}=\frac{5}{3}AB\)
Theo định lí Pitago ta có \(AB^2+AC^2=BC^2\Rightarrow15^2+\frac{25}{9}AH^2=\frac{25}{9}.15^2\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)
\(\Rightarrow AC=\frac{5}{3}.12=20\Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
Theo hệ thức lượng trong tam giác vuông ta có \(BH=\frac{AB^2}{AC}=9;CH=\frac{AC^2}{BC}=16\left(cm\right)\)
b. Theo hệ thức lượng trong tam giác vuông ta có \(BE=\frac{BH^2}{AB}=5,4\left(cm\right);CF=\frac{CH^2}{AC}=12,8\left(cm\right)\)
Ta có \(AH^3=12^3=1728\)
\(BC.BE.CF=25.5,4.12,8=1728\)
Vậy \(AH^3=BC.BE.CF\)
c. Ta kẻ \(CK⊥BC\)tại M \(\Rightarrow\)yêu cầu bài toán \(\Leftrightarrow\)chứng minh M là trung điểm BC
Ta gọi I là giao điểm của AH và EF
Xét \(\Delta AKI\)và \(\Delta AHM\)
có \(\hept{\begin{cases}\widehat{K}=\widehat{H}=90^0\\\widehat{Achung}\end{cases}\Rightarrow\Delta AKI~\Delta AHM\left(g-g\right)}\)
\(\Rightarrow\widehat{AIF}=\widehat{AMB}\)
Ta chứng minh được \(AFHE\)là hình chữ nhật vì \(\widehat{F}=\widehat{A}=\widehat{E}=90^0\)
\(\Rightarrow\widehat{IAF}=\widehat{IFA}\)\(\Rightarrow\widehat{FMA}=180^0-2\widehat{MAF}\left(1\right)\)
Lại có \(\widehat{HBA}=\widehat{IAF}\Rightarrow\widehat{AMH}=180^0-2\widehat{HBA}\)
\(\Rightarrow\Delta AMB\)cân tại I \(\Rightarrow MA=MB\)
Tương tự chứng minh được \(MA=MC\)
Vậy M là trung điểm BC hay ta có đpcm
\(\text{Hình bạn tự vẽ ^_^}\)
\(\text{a)Ta có: }AB^2=HB.BC=1,8.5=9\)
\(\Rightarrow AB=\sqrt{9}=3\left(\text{cm}\right)\)
\(\text{Lại có: }HC=BC-BH=5-1,8=3,2\left(\text{cm}\right)\)
\(\text{và: }AH^2=BH.CH=1,8.3,2=5,76\)
\(\Rightarrow AH=\sqrt{5,76}=2,4\left(\text{cm}\right)\)
\(\text{b) vì M là trung điểm BC nên }BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\left(\text{cm}\right)\)
\(\text{Ta lại có: }AC^2=CH.BC=3,2.5=16\)
\(\Rightarrow AC=\sqrt{16}=4\left(\text{cm}\right)\)
\(\text{Xét }\Delta DMC\text{ và }\Delta BAC\text{ có:}\)
\(\widehat{DMC}=\widehat{BAC}=90^o\)
\(\widehat{C}\text{ là góc chung}\)
\(\text{ }\Rightarrow\Delta DMC\text{ đồng dạng với }\Delta BAC\)
\(\Rightarrow\frac{DM}{AB}=\frac{DC}{BC}=\frac{CM}{AC}=\frac{2,5}{4}=0,625\left(\text{Tỉ số đồng dạng}\right)\)
\(\text{Vậy }\frac{S_{DMC}}{S_{BAC}}=\left(0,625\right)^2=\frac{25}{64}\)
a, \(AB=\sqrt{BH\cdot BC}=\sqrt{1,8\cdot5}=3\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-1,8^2}=2,4\)
b, \(\frac{S_{ABC}}{S_{DMC}}=\frac{MC^2}{BC^2}=\frac{1}{4}\)
c,\(\Delta ABC~\Delta MDC\Rightarrow\frac{BC}{DC}=\frac{AC}{MC}\Rightarrow AC\cdot CD=\frac{1}{2}BC^2\)
d,Cái này bạn tự tính nhá
Mk hơi lười nên làm hơi tắt có j thông cảm mk nha
a) Xét \(\Delta ABC\) có AM là trung tuyến ứng với cạnh huyền BC
=> \(AM=CM=\frac{1}{2}BC\)
=> \(\Delta AMC\) cân tại M
=> \(\widehat{MAC}=\widehat{MCA}\)
b) Có : \(\widehat{BAH}=\widehat{ACH}\) mà \(\widehat{MAC}=\widehat{MCA}\)
=> \(\widehat{BAH}=\widehat{KAM}\)
Xét \(\Delta AHB\) và \(\Delta AKM\) có :
\(\widehat{BAH}=\widehat{KAM}\) ; \(\widehat{AHB}=\widehat{AKM}=90^o\)
=> \(\Delta AHB\) ~ \(\Delta AKM\)
c) Xét \(\Delta ABH\) và \(\Delta CMK\) có :
\(\widehat{AHB}=\widehat{CKM}=90^o\) ;\(\widehat{BAH}=\widehat{ACH}\)
=> \(\Delta ABH\) ~ \(\Delta CMK\)
=> \(\frac{AB}{CM}=\frac{AH}{CK}\) mà BM = CM
=> \(\frac{AB}{BM}=\frac{AH}{CK}\Rightarrow AH.BM=CK.AB\left(đpcm\right)\)
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)