Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Rightarrow BC=\sqrt{10^2+20^2}=10\sqrt{5}\left(cm\right)\)
Áp dụng định lý Py-ta-go cho tam giác ABM vuông tại A ta có:
\(BM^2=AB^2+AM^2\)
\(\Rightarrow BM=\sqrt{AB^2+AM^2}\)
\(\Rightarrow BM=\sqrt{10^2+5^2}=5\sqrt{5}\left(cm\right)\)
b) Ta có:
\(\dfrac{AM}{AB}=\dfrac{1}{2}\)
\(\dfrac{BM}{BC}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MB}{BC}=\dfrac{1}{2}\)
Xét hai tam giác ABC và AMB có:
\(\widehat{BAC}\) chung
\(\dfrac{AM}{AB}=\dfrac{MB}{BC}=\dfrac{1}{2}\)
\(\Rightarrow\Delta ABC\sim\Delta AMB\left(c.g.c\right)\)
a) Xét hai tam giác ABE và ACD có:
\(\widehat{ACD}=\widehat{ABE}\left(gt\right)\)
\(\widehat{BAC}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACD\left(g.g\right)\)
b) Ta có: \(\Delta ABE\sim\Delta ACD\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AD}\)
a)
b) Phương trình hoành độ giao điểm của hai đường thẳng là:
\(x-1=2x\)
\(\Leftrightarrow2x-x=-1\)
\(\Leftrightarrow x=-1\)
Thay x = - 1 vào y = 2x ta có: \(y=2\cdot-1=-2\)
Vậy tọa độ giao điểm của 2 đường thẳng là \(\left(-1;-2\right)\)
a) Vào năm 2000 diện tích đất nông nghiệp ở nước ta là:
Thay t = 0 vào \(S=0,12t+8,97\) (vì t được tính theo số năm kể từ năm 2000) ta có:
\(S=0,12\cdot0+8,97=8,97\left(tr.ha\right)\)
b) Diện tích đất nông nghiệp ở nước ra đạt 10,05 triệu hec-ta ta thay \(S=10,05\) ta có:
\(10,05=0,12t+8,97\)
\(\Leftrightarrow0,12t=10,05-8,97\)
\(\Leftrightarrow0,12t=1,08\)
\(\Leftrightarrow t=1,08:0,12\)
\(\Leftrightarrow t=9\)
Vậy năm nước ta đạt 10,05 triệu héc-ta là: \(2000+9=2009\)
a) Ta có:
\(DF//AC\left(gt\right)\) (1)
\(DE//AB\left(gt\right)\) (2)
Từ (1) và (2) ⇒ AEDF là hình bình hành (3)
Mà AD là phân giác của góc FAE (4)
Từ (3) và (4) ⇒ AEDF là hình thoi
b) Xét hai tam giác CDE và CBA có:
\(\widehat{ACB}\) chung
\(\widehat{CED}=\widehat{CAB}\) (đồng vị vì DE//AB)
\(\Rightarrow\Delta CDE\sim\Delta CBA\left(g.g\right)\)
\(\Rightarrow\dfrac{DE}{AB}=\dfrac{CE}{AC}\Rightarrow DE\cdot AC=CE\cdot AB\)
Do: AEDF là hình thoi nên: DE = AE = AF
\(\Rightarrow AF\cdot AC=\left(AC-AE\right)\cdot AB\)
\(\Rightarrow\left(AB-BF\right)\cdot AC=AC\cdot AB-AE\cdot AB\)
\(\Rightarrow AB\cdot AC-BF\cdot AC=AC\cdot AB-AE\cdot AB\)
\(\Rightarrow BF\cdot AC=AE\cdot AB\)
\(\Rightarrow AF\cdot AB=BF\cdot AC\left(đpcm\right)\)
\({x^6} + {y^6} = {\left( {{x^2}} \right)^3} + {\left( {{y^2}} \right)^3} = \left( {{x^2} + {y^2}} \right)\left[ {{{\left( {{x^2}} \right)}^2} - {x^2}.{y^2} + {{\left( {{y^2}} \right)}^2}} \right] = \left( {{x^2} + {y^2}} \right)\left( {{x^4} - {x^2}{y^2} + {y^4}} \right)\)
a.
\(x\left(x-1\right)+x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
b.
\(5x\left(x-7\right)+3x-21=0\)
\(\Leftrightarrow5x\left(x-7\right)+3\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-7=0\\5x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
a) \(x\left(x-1\right)+x-1=0\)
\(\Leftrightarrow x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(---\)
b) \(5x\left(x-7\right)+3x-21=0\)
\(\Leftrightarrow5x\left(x-7\right)+\left(3x-21\right)=0\)
\(\Leftrightarrow5x\left(x-7\right)+3\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
\(---\)
c) \(5x^2-5-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(5x^2-5\right)-4\left(x^2-2\cdot x\cdot1+1^2\right)=0\)
\(\Leftrightarrow5\left(x^2-1^2\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+5-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)
\(---\)
d) \(4x^2-9-\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(4x^2-9\right)-\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[\left(2x\right)^2-3^2\right]-\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left[\left(2x+3\right)-\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3-x+4\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-7\end{matrix}\right.\)
\(\text{#}Toru\)