K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(f\left(x\right)=2x^2\left(x-1\right)-5\left(x+2\right)-2x\left(x-2\right)\)

\(=2x^3-2x^2-5x-10-2x^2+4x\)

\(=2x^3-4x^2-x-10\)

Bậc là 3

Ta có: \(g\left(x\right)=x^2\left(2x-3\right)-x\left(x+1\right)-\left(3x-2\right)\)

\(=2x^3-3x^2-x^2-x-3x+2\)

\(=2x^3-4x^2-4x+2\)

 

b) Ta có: h(x)=f(x)-g(x)

\(=2x^3-4x^2-x-10-2x^3+4x^2+4x-2\)

\(=3x-12\)

Đặt h(x)=0

nên 3x-12=0

hay x=4

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

Ta có :

\(a^2+b^2+c^2+d^2+e^2\)

\(=\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\)

Ta lại có :

\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\) \(\dfrac{a^2}{4}-ab+b^2\ge0\) \(\dfrac{\Rightarrow a^2}{4}+b^2\ge ab\)

Tương tự :

\(\dfrac{a^2}{4}+c^2\ge ac\)

\(\dfrac{a^2}{4}+d^2\ge ad\)

\(\dfrac{a^2}{4}+e^2\ge ae\)

\(\Rightarrow\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\ge ab+ac+ad+ae\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

2 tháng 8 2017

cảm ơn bạn

12 tháng 12 2016

CÓ : \(\frac{a}{c}=\frac{c}{b}\)=>\(ab=c^2\)

THẾ VÀO =>\(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a^2+ab}{b^2+ab}\)=\(\frac{a\left(a+b\right)}{b\left(a+b\right)}\)=\(\frac{a}{b}\)

6 tháng 1 2017

Câu 1:

Ta có\(\frac{a}{c}=\frac{c}{b}=>ab=c^2\) 

=>\(\frac{a^2+c^2}{c^2+b^2}=\frac{a^2+ab}{ab+b^2}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đccm\right)\)  

Câu 2:

Theo bài ra, ta có:\(\frac{a}{c}=\frac{c}{b}\)

=>\(ab=c^2\)

Ta có: \(\frac{b-a}{a}=\frac{\left(b-a\right).\left(a+b\right)}{a.\left(a+b\right)}=\frac{b.\left(a+b\right)-a.\left(a+b\right)}{a^2+ab}\)

\(\frac{ab+b^2-\left(a^2+ab\right)}{a^2+c^2}=\frac{ab+b^2-a^2-ab}{a^2+c^2}=\frac{b^2-a^2}{a^2+c^2}\)

=>\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\left(đpcm\right)\)

MIK CHẮC CHẮN BÀI NÀY LÀ HOÀN TOÀN CHÍNH XÁC LUN!!!!!!!!

k ĐÚNG cho mik nha, rùi mai mốt có j thì giúp đỡ nhau nhiều. 

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

6 tháng 12 2018

đặt 

 a/b=c/d =k

=> a=b.k, c=d.k

thay vào 2 vế ta được đpcm

19 tháng 7 2018

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

Từ (1) và (2) => đpcm

b, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\left(1\right)\)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\left(2\right)\)

Từ (1) và (2) => đpcm

16 tháng 11 2016

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau tao có

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) ta có ĐPCM

13 tháng 10 2016

Đặt a/b =c/d =k =>a =bk ,c =dk

Ta có: ab/cd =bk.b /dk.d =b^2.k /d^2 .k =(b/d)^2                                      (1)

           (a+b)^2 /(c+d)^2 =(bk+b/dk+d)^2 =[b(k+1)/d(k+1)]^2 =(b/d)^2       (2)

Từ(1)(2) suy ra ab/cd  =(a+b)^2 /(c+d)^2