Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức có nghĩa \(\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\left|x\right|>1\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\\a\ne4\end{matrix}\right.\)
\(M=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\left(\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ =\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left(\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ =\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\\ =\frac{\sqrt{a}-2}{3\sqrt{a}}\)
\(P=\dfrac{1}{xy+\dfrac{2}{xy}}=\dfrac{1}{xy+\dfrac{1}{16xy}+\dfrac{31}{16xy}}\le\dfrac{1}{\dfrac{1}{2}+\dfrac{31}{16.\dfrac{1}{4}\left(x+y\right)^2}}\le\dfrac{1}{\dfrac{1}{2}+\dfrac{31}{4}}=\dfrac{4}{33}\)
mình nghĩ là ntn
áp dụng BĐT AM-GM
\(\dfrac{xy}{x^2y^2+2}\le\dfrac{xy}{2\sqrt{2}xy}=\dfrac{1}{2\sqrt{2}}\)
\(maxP=\dfrac{1}{2\sqrt{2}}\)
dấu = xảy ra khi x,y thỏa mãn
\(\left\{{}\begin{matrix}x+y\le1\\xy=\sqrt{2}\end{matrix}\right.\)
chắc là sai rồi
\(x^3-4x^2y+x^2-y-1=y^3+x^2-x^2y-3xy^2-y\)
\(\left(x-y\right)^3=-1\)
<=>y=x-1
thay vào pt đầu được
\(-3x^3+5x^2-x=0\)
\(x=\left[{}\begin{matrix}\dfrac{5+\sqrt{13}}{6}\\\dfrac{5-\sqrt{13}}{6}\\0\end{matrix}\right.\)
Lời giải:
Ta có: Thay \(1=x^3+y^3\) vào phương trình thứ nhất
\(\Rightarrow 2x^3-(x^3+y^3)=5y-5x\)
\(\Leftrightarrow x^3-y^3=5y-5x\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2)=5(y-x)\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2+5)=0\)
Ta thấy \(x^2+xy+y^2+5=(x+\frac{y}{2})^2+\frac{3}{4}y^2+5>0, \forall x,y\in\mathbb{R}\)
Do đó: \(x-y=0\Leftrightarrow x=y\)
Suy ra: \(1=x^3+y^3=2x^3\Leftrightarrow x^3=\frac{1}{2}\Rightarrow x=\sqrt[3]{\frac{1}{2}}\)
Vậy hpt có nghiệm \((x,y)=\left(\sqrt[3]{\frac{1}{2}}; \sqrt[3]{\frac{1}{2}}\right)\)
giúp cái gì vậy
giúp câu hỏi ấy