Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ ĐKXĐ: ...
\(2x^3-2y^3+5x-5y=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2+5\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)^2+x^2+y^2+5\right]=0\)
\(\Leftrightarrow x=y\) (ngoặc sau luôn dương)
Thế vào pt dưới:
\(\frac{3x}{x^2+x+1}+\frac{5x}{x^2+3x+1}=2\)
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{3}{x+\frac{1}{x}+1}+\frac{5}{x+\frac{1}{x}+3}=2\)
Đặt \(x+\frac{1}{x}+1=t\)
\(\Rightarrow\frac{3}{t}+\frac{5}{t+2}=2\Leftrightarrow3\left(t+2\right)+5t=2t\left(t+2\right)\)
\(\Leftrightarrow2t^2-4t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}+1=-1\\x+\frac{1}{x}+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2-2x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)
a/ ĐKXĐ: ...
\(2x-\frac{1}{y}=2y-\frac{1}{x}\Leftrightarrow\frac{2xy-1}{y}=\frac{2xy-1}{x}\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\2xy-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\xy=\frac{1}{2}\end{matrix}\right.\)
TH1: \(x=y\Rightarrow6x^2=7x^2-8\Rightarrow x^2=8\Rightarrow...\)
TH2: \(xy=\frac{1}{2}\Rightarrow y=\frac{1}{2x}\)
\(\Rightarrow2\left(2x^2+\frac{1}{4x^2}\right)+4\left(x-\frac{1}{2x}\right)=\frac{7}{2}-8\)
\(\Leftrightarrow4\left(x^2+\frac{1}{4x^2}\right)+8\left(x-\frac{1}{2x}\right)+9+4x^2=0\)
Đặt \(x-\frac{1}{2x}=t\Rightarrow x^2+\frac{1}{4x^2}=t^2+1\)
\(\Rightarrow4\left(t^2+1\right)+8t+9+4x^2=0\)
\(\Leftrightarrow4\left(t+1\right)^2+4x^2+9=0\)
Vế trái luôn dương nên pt vô nghiệm
\(\Rightarrow2x^3-\left(x^3+y^3\right)=5y-5x\)
\(\Leftrightarrow x^3-y^3+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+5\right)=0\)
\(\Leftrightarrow x=y\)
Thay vào pt sau: \(2x^3=1\Rightarrow x=y=\frac{1}{\sqrt[3]{2}}\)
a, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3.3-5=4\\x=\frac{33}{11}=3\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất là ( x;y ) = ( 3;4 )
b, Làm tương tự a
c, Ta có : \(\left\{{}\begin{matrix}\frac{14}{x-y+2}-\frac{10}{x+y-1}=9\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\frac{14}{x-y+2}-\frac{10}{x+y-1}=9\\\frac{15}{x-y+2}+\frac{10}{x+y-1}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{29}{x-y+2}=29\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x-y+2=1\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=y-1\\\frac{3}{y-1-y+2}+\frac{2}{y-1+y-1}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=y-1\\3+\frac{2}{2y-2}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=y-1\\\frac{2}{2y-2}=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=y-1\\2y-2=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-1=1\\y=2\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất là ( x;y ) = ( 1;2 )
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}xy+5x+3y+15=xy+8x+y+8\\10xy+14x-15y-21=10xy+10x-12y-12\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-3x+2y=-7\\4x-3y=9\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-9x+6y=-21\\8x-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-x=-3\\8x-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\8.3-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(3;1)
b) ĐKXĐ:\(\left\{{}\begin{matrix}2y-5\ne0\\3y-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ne\dfrac{5}{2}\\y\ne\dfrac{4}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x-3}{2y-5}=\dfrac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(2x-3\right)\left(3y-4\right)=\left(3x+1\right)\left(2y-5\right)\\2x-6-3y-6=-16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}6xy-8x-9y+12=6xy-15x+2y-5\\2x-3y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}7x-11y=-17\\2x-3y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22y=-34\\14x-21y=-28\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22y=-34\\-y=-6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22.6=-34\\y=6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=7\left(TM\right)\\y=6\left(TM\right)\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(7;6)
a) Xem lại đề
b) \(\left\{{}\begin{matrix}5x-3y=5\\2x+5y=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5.\frac{33-5y}{2}-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}165-25y-6y=10\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31y=155\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=\frac{33-5.5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=4\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\frac{x}{2}-\frac{y}{3}=0\\5x+y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{x}{2}-\frac{13-5x}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{3x-26+10x}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5.2\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)
Lời giải:
Ta có: Thay \(1=x^3+y^3\) vào phương trình thứ nhất
\(\Rightarrow 2x^3-(x^3+y^3)=5y-5x\)
\(\Leftrightarrow x^3-y^3=5y-5x\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2)=5(y-x)\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2+5)=0\)
Ta thấy \(x^2+xy+y^2+5=(x+\frac{y}{2})^2+\frac{3}{4}y^2+5>0, \forall x,y\in\mathbb{R}\)
Do đó: \(x-y=0\Leftrightarrow x=y\)
Suy ra: \(1=x^3+y^3=2x^3\Leftrightarrow x^3=\frac{1}{2}\Rightarrow x=\sqrt[3]{\frac{1}{2}}\)
Vậy hpt có nghiệm \((x,y)=\left(\sqrt[3]{\frac{1}{2}}; \sqrt[3]{\frac{1}{2}}\right)\)