\(3^{x-1}+5.3^{x-1}=162\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) 3x-1(1+5)=162

3x-1.6=162

3x-1=162:6=27=33

=>x-1=3

x=4

b) x(x+3)=0

=>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

c) Vì tích nhỏ hơn 0 nên có 1 thừa số dương và 1 thừa số âm

Có x-1>x-3

=>x-1>0 và x-3<0

=>x>1 và x<3

Vậy x=2

31 tháng 3 2017

a) 3x-1 + 5. 3x-1 = 162

  1. 3x-1 + 5. 3x-1  = 162

( 1 + 5 ) . 3x-1 = 162

6. 3x-1 = 162

    3x-1 = 162 : 6

    3x-1 = 27

    3x-1 = 33

    x - 1 =3

    x       = 3 + 1

    x        = 4

a.

\(\sqrt{2x+3}=1\)

\(2x+3=1\)

\(2x=1-3\)

\(2x=-2\)

\(x=-\frac{2}{2}\)

\(x=-1\)

b.

\(\left(3x-1\right)^2-25=0\)

\(\left(3x-1\right)^2=25\)

\(\left(3x-1\right)^2=\left(\pm5\right)^2\)

\(3x-1=\pm5\)

TH1:

\(3x-1=5\)

\(3x=5+1\)

\(3x=6\)

\(x=\frac{6}{3}\)

\(x=2\)

TH2:

\(3x-1=-5\)

\(3x=-5+1\)

\(3x=-4\)

\(x=-\frac{4}{3}\)

Vậy \(x=2\) hoặc \(x=-\frac{4}{3}\)

c.

\(\left(2x+4\right)\left(x^2+1\right)\left(x-2\right)=0\)

TH1:

\(2x+4=0\)

\(2x=-4\)

\(x=-\frac{4}{2}\)

\(x=-2\)

TH2:

\(x^2+1=0\)

\(x^2=-1\)

mà \(x^2\ge0\) với mọi x

=> loại

TH3:

\(x-2=0\)

\(x=2\)

Vậy \(x=2\) hoặc \(x=-2\)

20 tháng 7 2016

\(a.\)\(=>2x+3=1\)\(=>2x=-2\)\(=>x=-1\)

\(b.\)\(=>\left(3x-1\right)^2=25\)\(=>\left(3x-1\right)^2=5^2=>3x-1=5=>3x=6=>x=2\)

\(c.\)\(=>2x+4=0\)hoac \(x^2+1=0\)hoac \(x-2=0\)

=>  * 2x=4 => x= 2

     * x^2=-1=> x=-1

     * x = 2

\(=>x\in\left(2;-1\right)\)

18 tháng 9 2019

1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)

\(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)

\(\frac{1}{3}x=\frac{11}{15}\)

\(x=\frac{11}{15}:\frac{1}{3}\)

\(x=\frac{11}{5}\)

Vậy \(x=\frac{11}{5}.\)

2) \(2,5:7,5=x:\frac{3}{5}\)

\(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)

\(\frac{1}{3}=x:\frac{3}{5}\)

\(x=\frac{1}{3}.\frac{3}{5}\)

\(x=\frac{1}{5}\)

Vậy \(x=\frac{1}{5}.\)

4) \(\left|x\right|+\left|x+2\right|=0\)

Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)

\(\left|x\right|+\left|x+2\right|=0\)

\(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.

\(x\in\varnothing\)

Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.

10) \(5-\left|1-2x\right|=3\)

\(\left|1-2x\right|=5-3\)

\(\left|1-2x\right|=2\)

\(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\)\(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)

Chúc bạn học tốt!

18 tháng 9 2019

9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)

\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)

\(10=26:\left(2x-1\right)\)

\(2x-1=26:10\)

\(2x-1=2,6\)

\(2x=2,6+1\)

\(2x=3,6\)

\(x=3,6:2\)

\(x=1,8\)

27 tháng 6 2018

1) |x|=x+2

=> \(\left[{}\begin{matrix}x=x+2\\x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=2\left(voli\right)\\2x=-2\Rightarrow x=-1\end{matrix}\right.\)

vậy x=-1

c;b tương tự

2) \(\left|x-\dfrac{3}{2}\right|=\left|\dfrac{5}{2}-x\right|\)

=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{5}{2}-x\\x-\dfrac{3}{2}=x-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\Rightarrow x=2\\0=-1\left(voli\right)\end{matrix}\right.\)

vậy x=2

5 tháng 7 2018

Cảm ơn bn nhìu nhoa

vuivuiyeu

25 tháng 7 2020

\(\frac{1}{3}.3^n+5.3^{n-1}=162\)

<=> \(3^{n-1}+5.3^{n-1}=162\)

<=> \(3^{n-1}\left(1+5\right)=162\)

<=> \(3^{n-1}.6=162\)

<=> \(3^{n-1}=162:6\)

<=> \(3^{n-1}=27\)

<=> \(3^{n-1}=3^3\)

<=> n - 1 = 3

<=> n = 3 + 1 = 4

25 tháng 7 2020

Câu 1

a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)

<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)

b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)

Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)

=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)

Bài 2

\(\frac{1}{3}.3^n+5.3^{n-1}=162\)

<=>\(3^{n-1}+5.3^{n-1}=162\)

<=>\(6.3^{n-1}=162\)

<=>\(3^{n-1}=27=3^3\)

<=>\(n-1=3\)

<=>\(n=4\)

10 tháng 12 2019

a) \(3,6-\left|x-0,4\right|=0\)

\(\Leftrightarrow\left|x-0,4\right|=3,6\)

\(\Leftrightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)

Vậy \(x\in\left\{4;-3,2\right\}\)

b) Ta có:

\(\frac{x}{2}=y=\frac{z}{3}=\frac{2y}{2}=\frac{x-2y+z}{2-2+3}=\frac{210}{3}=70\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=70\\y=70\\\frac{z}{3}=70\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=140\\y=70\\z=210\end{matrix}\right.\)

Vậy \(x=140\); \(y=70\); \(z=210\)

c)\(\left|x+0,25\right|-4=\frac{1}{4}\)

\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{17}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{4}=\frac{17}{4}\\x+\frac{1}{4}=\frac{-17}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{-9}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{4;\frac{-9}{2}\right\}\)

d) \(x:\left(0,25\right)^4=\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,25\right)^4.\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,5\right)^8.\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,5\right)^{10}=\left(\frac{1}{2}\right)^{10}=\frac{1}{2^{10}}=\frac{1}{1024}\)

Vậy \(x=\frac{1}{1024}\)

e) \(3^{x-1}+5.3^{x-1}=162\)

\(\Leftrightarrow6.3^{x-1}=162\)

\(\Leftrightarrow3^{x-1}=27\)

\(\Leftrightarrow3^{x-1}=3^3\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

f) \(\frac{x}{-25}=\frac{2}{5}\)

\(\Leftrightarrow x=\left(-25\right).\frac{2}{5}=-10\)

Vậy \(x=-10\)

g) \(\left|x+\frac{3}{4}\right|-\frac{3}{4}=\sqrt{\frac{1}{9}}\)

\(\Leftrightarrow\left|x+\frac{3}{4}\right|-\frac{3}{4}=\frac{1}{3}\)

\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{13}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{13}{12}\\x+\frac{3}{4}=-\frac{13}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-\frac{11}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{3};-\frac{11}{6}\right\}\)

10 tháng 12 2019

a) \(3,6-\left|x-0,4\right|=0\)

\(\Rightarrow\left|x-0,4\right|=3,6-0\)

\(\Rightarrow\left|x-0,4\right|=3,6.\)

\(\Rightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3,6+0,4\\x=\left(-3,6\right)+0,4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)

Vậy \(x\in\left\{4;-3,2\right\}.\)

c) \(\left|x+0,25\right|-4=\frac{1}{4}\)

\(\Rightarrow\left|x+\frac{1}{4}\right|=\frac{1}{4}+4\)

\(\Rightarrow\left|x+\frac{1}{4}\right|=\frac{17}{4}.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{4}=\frac{17}{4}\\x+\frac{1}{4}=-\frac{17}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{17}{4}-\frac{1}{4}\\x=\left(-\frac{17}{4}\right)-\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{9}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{4;-\frac{9}{2}\right\}.\)

d) \(x:\left(0,25\right)^4=\left(0,5\right)^2\)

\(\Rightarrow x:\left(0,25\right)^4=0,25\)

\(\Rightarrow x=\left(0,25\right).\left(0,25\right)^4\)

\(\Rightarrow x=\left(0,25\right)^5\)

\(\Rightarrow x=\frac{1}{1024}\)

Vậy \(x=\frac{1}{1024}.\)

Chúc bạn học tốt!

26 tháng 2 2020

GIÚP MÌNH PLEASE

26 tháng 2 2020

a) Vì x< 0 nên x= \(-\sqrt{7}\)

b) x-2 =\(\sqrt{2}\)hoặc x-2 = -\(\sqrt{2}\)

suy ra x= \(\sqrt{2}\)+2 hoặc x= \(-\sqrt{2}\)+2

c)

x+\(\sqrt{3}\) =\(\sqrt{5}\)hoặc x+\(\sqrt{3}\) = -\(\sqrt{5}\)

suy ra x= \(\sqrt{5}-\sqrt{3}\)hoặc x= \(-\sqrt{5}-\sqrt{3}\)

Các bạn tự kết luận nhé

a/ x2+5x=0

=> x2=5x=0

=> x=0

b/ 3(2x+3)(3x-5)<0

=> 2x+3 và 3x-5 phải khác dấu

x=0

câu này mk chỉ bít kết quả thui thông cảm nha

 

c/ x>0

d/ x>3

e/ x<=-1