Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a))\(\frac{2^3.3^3.3^3.3^4.5^4.5^4.3^7.2^7.2^7.2^7.2^6}{2^5.2^5.3^5.2^6.2^6.3^6.3^6.3^4.5^4}=\frac{5^4.2^7}{3^4}=\frac{625.128}{81}=\frac{80000}{81}\)
\(\frac{18^3.75^4.24^7.2^6}{12^5.36^6.15^4}=\frac{2^3.3^6.3^4.5^8.2^{21}.3^7.2^6}{2^{10}.3^5.2^{12}.3^{12}.3^4.5^4}=\frac{2^{30}.3^{17}.5^8}{2^{22}.3^{21}.5^4}=\frac{2^8.5^4}{3^4}\)
mình làm đúng đó không tin thì bấm máy tính thử đi phạm thủy linh làm sai rồi
cho mình đúng hen
a)
\(\left[\dfrac{3}{8}+\left(-\dfrac{3}{4}+\dfrac{7}{12}\right)\right].\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}.\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{25}{144}+\dfrac{1}{2}\)
\(=\dfrac{97}{144}\)
b)
\(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}+\dfrac{1}{2}\right)\)
\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}-\dfrac{1}{2}\)
\(=0\)
c)
\(\dfrac{6}{\dfrac{5}{12}}:\dfrac{2}{\dfrac{3}{4}}+\dfrac{11}{\dfrac{1}{4}}\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(=\dfrac{27}{5}+\dfrac{11}{\dfrac{1}{4}}.\dfrac{2}{15}\)
\(=\dfrac{27}{5}+\dfrac{88}{15}\)
\(=\dfrac{169}{15}\)
\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)
\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)
Khử mẫu : \(12x-12+6x-6=4x+3x-7\)
\(\Leftrightarrow18x-18=7x-7\Leftrightarrow11x=11\Leftrightarrow x=1\)
\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)
\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)
\(\Leftrightarrow\frac{12x-12+6x-6}{12}=\frac{4x+3x-7}{12}\)
\(\Leftrightarrow18x-18=7x-7\)
\(\Leftrightarrow18x+7x=18+7\)
\(\Leftrightarrow25x=25\)
\(\Leftrightarrow x=1\)
a)
\(\dfrac{2}{3}-\dfrac{5}{12}x=\dfrac{-8}{3}\)\(\Rightarrow\dfrac{5}{12}x=\dfrac{2}{3}-\left(-\dfrac{8}{3}\right)\)
\(\Rightarrow\dfrac{5}{12}x=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\)
\(\Rightarrow x=\dfrac{10}{3}:\dfrac{5}{12}=8\)
b) \(3x-2\left(2x-1\right)=1\dfrac{1}{3}\)\(\Rightarrow3x-4x+2=\dfrac{4}{3}\)
\(\Rightarrow3x-4x=\dfrac{4}{3}-2\)
\(\Rightarrow-x=-\dfrac{2}{3}\)\(\Rightarrow x=\dfrac{2}{3}\)
c) \(\dfrac{x+4}{20}=\dfrac{5}{x+4}\Rightarrow\left(x+4\right)\left(x+4\right)=20.5\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow\left(x+4\right)^2=10^2\) hoặc \(\left(x+4\right)^2=\left(-10\right)^2\)
=> x+4=10 => x+4=-10
=> x=6 => x=-14
\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)
\(\Rightarrow2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{99}{2^{98}}+\dfrac{100}{2^{99}}\)
\(\Rightarrow2A-A=\left(2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{99}{2^{98}}+\dfrac{100}{2^{99}}\right)-\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\right)\)
\(\Rightarrow A=\left(2-1\right)+\dfrac{3}{2^2}+\left(\dfrac{4}{2^3}-\dfrac{3}{2^3}\right)+....\left(\dfrac{99}{2^{98}}-\dfrac{98}{2^{98}}\right)-\dfrac{100}{2^{100}}\)
\(\Rightarrow A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{100}{2^{100}}\)
\(\Rightarrow A=1+\dfrac{3}{2^2}+\left(\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}\right)-\dfrac{100}{2^{100}}\)
\(\Rightarrow A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)
\(VT=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\) \(\Rightarrow VT\ge4\) (1)
Lại có \(3\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2+2\ge2\)
\(\Rightarrow\dfrac{8}{3\left(x+1\right)^2+2}\le\dfrac{8}{2}=4\) \(\Rightarrow VP\le4\) (2)
Từ (1), (2) \(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|2x+3\right|+\left|2x-1\right|=4\\\dfrac{8}{3\left(x+1\right)^2+2}=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x+3\right)\left(1-2x\right)\ge0\\3\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)
\(\frac{1}{2}+\frac{2}{3}x=\frac{1}{4}\)
\(\frac{2}{3}x=\frac{1}{4}-\frac{1}{2}\)
\(\frac{2}{3}x=-\frac{1}{4}\)
\(x=-\frac{1}{4}:\frac{2}{3}\)
\(x=-\frac{3}{8}\)
\(\frac{2}{3}x\)\(=\)\(\frac{1}{4}\)\(-\)\(\frac{1}{2}\)
\(\frac{2}{3}x\)\(=\)\(\frac{-1}{4}\)
\(x\)\(=\)\(\frac{-1}{4}\)\(:\)\(\frac{2}{3}\)
\(x\)\(=\)\(\frac{-3}{8}\)
\(\dfrac{12^3\cdot28^2}{18^4\cdot24^3}=\dfrac{2^6\cdot3^3\cdot2^4\cdot7^2}{2^4\cdot3^8\cdot2^9\cdot3^3}=\dfrac{2^{10}\cdot7^2}{2^{13}\cdot3^8}=\dfrac{1}{8}\cdot\dfrac{49}{6561}=\dfrac{49}{52488}\)