K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{12^3\cdot28^2}{18^4\cdot24^3}=\dfrac{2^6\cdot3^3\cdot2^4\cdot7^2}{2^4\cdot3^8\cdot2^9\cdot3^3}=\dfrac{2^{10}\cdot7^2}{2^{13}\cdot3^8}=\dfrac{1}{8}\cdot\dfrac{49}{6561}=\dfrac{49}{52488}\)

13 tháng 8 2015

a))\(\frac{2^3.3^3.3^3.3^4.5^4.5^4.3^7.2^7.2^7.2^7.2^6}{2^5.2^5.3^5.2^6.2^6.3^6.3^6.3^4.5^4}=\frac{5^4.2^7}{3^4}=\frac{625.128}{81}=\frac{80000}{81}\)

13 tháng 8 2015

\(\frac{18^3.75^4.24^7.2^6}{12^5.36^6.15^4}=\frac{2^3.3^6.3^4.5^8.2^{21}.3^7.2^6}{2^{10}.3^5.2^{12}.3^{12}.3^4.5^4}=\frac{2^{30}.3^{17}.5^8}{2^{22}.3^{21}.5^4}=\frac{2^8.5^4}{3^4}\)

mình làm đúng đó không tin thì bấm máy tính thử đi phạm thủy linh làm sai rồi

cho mình đúng hen

14 tháng 8 2018

a)

\(\left[\dfrac{3}{8}+\left(-\dfrac{3}{4}+\dfrac{7}{12}\right)\right].\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\dfrac{5}{24}.\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\dfrac{25}{144}+\dfrac{1}{2}\)

\(=\dfrac{97}{144}\)

b)

\(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}+\dfrac{1}{2}\right)\)

\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}-\dfrac{1}{2}\)

\(=0\)

c)

\(\dfrac{6}{\dfrac{5}{12}}:\dfrac{2}{\dfrac{3}{4}}+\dfrac{11}{\dfrac{1}{4}}\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)

\(=\dfrac{27}{5}+\dfrac{11}{\dfrac{1}{4}}.\dfrac{2}{15}\)

\(=\dfrac{27}{5}+\dfrac{88}{15}\)

\(=\dfrac{169}{15}\)

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)

Khử mẫu : \(12x-12+6x-6=4x+3x-7\)

\(\Leftrightarrow18x-18=7x-7\Leftrightarrow11x=11\Leftrightarrow x=1\)

9 tháng 8 2020

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12+6x-6}{12}=\frac{4x+3x-7}{12}\)

\(\Leftrightarrow18x-18=7x-7\)

\(\Leftrightarrow18x+7x=18+7\)

\(\Leftrightarrow25x=25\)

\(\Leftrightarrow x=1\)

1 tháng 5 2017

a)

\(\dfrac{2}{3}-\dfrac{5}{12}x=\dfrac{-8}{3}\)\(\Rightarrow\dfrac{5}{12}x=\dfrac{2}{3}-\left(-\dfrac{8}{3}\right)\)

\(\Rightarrow\dfrac{5}{12}x=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\)

\(\Rightarrow x=\dfrac{10}{3}:\dfrac{5}{12}=8\)

b) \(3x-2\left(2x-1\right)=1\dfrac{1}{3}\)\(\Rightarrow3x-4x+2=\dfrac{4}{3}\)

\(\Rightarrow3x-4x=\dfrac{4}{3}-2\)

\(\Rightarrow-x=-\dfrac{2}{3}\)\(\Rightarrow x=\dfrac{2}{3}\)

c) \(\dfrac{x+4}{20}=\dfrac{5}{x+4}\Rightarrow\left(x+4\right)\left(x+4\right)=20.5\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow\left(x+4\right)^2=10^2\) hoặc \(\left(x+4\right)^2=\left(-10\right)^2\)

=> x+4=10 => x+4=-10

=> x=6 => x=-14

1 tháng 5 2017

Thanks

3 tháng 10 2018
b,đặt k=x/5=y/3 x=5k;y=3k X^2-y^2=1600 Thay vào (5k)^2-(3k)^2=1600 => 25*k^2-9*k^2=1600 =>k^2*(25-9)=1600 =>k^2*16=1600 =>k^2=100 k=10 hoặc k=-10 Với k=10=>x=50,y=30 Với k=-10=>x=-50,y=-30
14 tháng 3 2017

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)

\(\Rightarrow2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{99}{2^{98}}+\dfrac{100}{2^{99}}\)

\(\Rightarrow2A-A=\left(2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{99}{2^{98}}+\dfrac{100}{2^{99}}\right)-\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\right)\)

\(\Rightarrow A=\left(2-1\right)+\dfrac{3}{2^2}+\left(\dfrac{4}{2^3}-\dfrac{3}{2^3}\right)+....\left(\dfrac{99}{2^{98}}-\dfrac{98}{2^{98}}\right)-\dfrac{100}{2^{100}}\)

\(\Rightarrow A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{100}{2^{100}}\)

\(\Rightarrow A=1+\dfrac{3}{2^2}+\left(\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}\right)-\dfrac{100}{2^{100}}\)

\(\Rightarrow A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

14 tháng 3 2017

Là còn lại A= 2- \(\dfrac{51}{2^{99}}\) chi bn?

NV
11 tháng 1 2019

\(VT=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\) \(\Rightarrow VT\ge4\) (1)

Lại có \(3\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2+2\ge2\)

\(\Rightarrow\dfrac{8}{3\left(x+1\right)^2+2}\le\dfrac{8}{2}=4\) \(\Rightarrow VP\le4\) (2)

Từ (1), (2) \(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|2x+3\right|+\left|2x-1\right|=4\\\dfrac{8}{3\left(x+1\right)^2+2}=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x+3\right)\left(1-2x\right)\ge0\\3\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

Mong mn giúpthanghoathanghoathanghoa

Mk sắp thi r ạ!!!khocroikhocroikhocroi

1 tháng 11 2018

\(\frac{1}{2}+\frac{2}{3}x=\frac{1}{4}\)

            \(\frac{2}{3}x=\frac{1}{4}-\frac{1}{2}\)

            \(\frac{2}{3}x=-\frac{1}{4}\)

                 \(x=-\frac{1}{4}:\frac{2}{3}\)

                \(x=-\frac{3}{8}\)

1 tháng 11 2018

\(\frac{2}{3}x\)\(=\)\(\frac{1}{4}\)\(-\)\(\frac{1}{2}\)

\(\frac{2}{3}x\)\(=\)\(\frac{-1}{4}\)

\(x\)\(=\)\(\frac{-1}{4}\)\(:\)\(\frac{2}{3}\)

\(x\)\(=\)\(\frac{-3}{8}\)