K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3: góc AMN=góic ACM

=>AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM

=>góc AMB=90 độ

=>Tâm o1 của đường tròn ngoại tiếp ΔECM nằm trên BM

NO1 min khi NO1=d(N;BM)

=>NO1 vuông góc BM

Gọi O1 là chân đường vuông góc kẻ từ N xuống BM

=>O1 là tâm đường tròn ngoại tiếp ΔECM  có bán kính là O1M
=>d(N;tâm đường tròn ngoại tiếp ΔECM) nhỏ nhất khi C là giao của (O1;O1M) với (O) với O1 ;là hình chiếu vuông góc của N trên BM

1B

2A

3C

4D

5C

 

13 tháng 5 2021

bài 3 : 

gọi số xe ban đầu của đội là x(xe)(x>2)

sau khi 2 xe điều động đi làm viêc khác thì số xe còn lại là x-2(xe)

theo dự định cả đôi xe phải vận chuyển 120 tấn hàng

nên mỗi xe ban đầu phải vận chuyển:120/x(tấn hàng)

mỗi xe lúc sau( khi có 2 xe bị điều động đi chỗ khác) phải chuyển

120/x-2(tấn hàng)

vì để hoàn thành công việc mỗi xe còn lại phải chở thêm 2 tấn hàng

=>pt:(120/x-2)-120/x=2

giải pt theo \(\Delta\) ta tìm được x1=12(thỏa mãn)

x2=-10(loại)

vậy lúc đầu trong đội có 12 xe

Câu 4: 

a) Xét ΔOAB có OA=OB(=R)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOAB cân tại O(cmt)

mà OI là đường trung tuyến ứng với cạnh đáy AB(I là trung điểm của AB)

nên OI là đường cao ứng với cạnh AB(Định lí tam giác cân)

hay OI\(\perp\)AB

Ta có: \(\widehat{OIM}=90^0\)(OI\(\perp\)AB)

nên I nằm trên đường tròn đường kính OM(1)

Ta có: \(\widehat{OCM}=90^0\)(gt)

nên C nằm trên đường tròn đường kính OM(2)

Ta có: \(\widehat{ODM}=90^0\)(gt)

nên D nằm trên đường tròn đường kính OM(3)

Từ (1), (2) và (3) suy ra O,I,C,M,D cùng nằm trên một đường tròn(Đpcm)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

Bạn cần bài nào thì nên ghi chú rõ ra.

a) Ta có: \(Q=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-3-\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b) Thay \(x=4+2\sqrt{3}\) vào Q, ta được:

\(Q=\dfrac{\sqrt{3}+1+1}{\sqrt{3}+1-1}=\dfrac{2+\sqrt{3}}{\sqrt{3}}=\dfrac{2\sqrt{3}+3}{3}\)

c) Để Q=3 thì \(\sqrt{x}+1=3\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\sqrt{x}=-3-1\)

\(\Leftrightarrow2\sqrt{x}=4\)

hay x=4

d) Để \(Q>\dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}+2-\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}>0\)

\(\Leftrightarrow\sqrt{x}-1>0\)

\(\Leftrightarrow x>1\)

Kết hợp ĐKXĐ, ta được: x>1

e) Để Q nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow2⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

7 tháng 9 2021

\(1,A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\left(x>0;x\ne1;x\right)\\ A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\left(\sqrt{x}-1\right)=\dfrac{x-1}{\sqrt{x}}\)

\(2,x=2\sqrt{2}+3=\left(\sqrt{2}+1\right)^2\\ \Leftrightarrow A=\dfrac{2\sqrt{2}+3}{\sqrt{2}+1}=\dfrac{\left(2\sqrt{2}+3\right)\left(\sqrt{2}-1\right)}{1}\\ =4\sqrt{2}-2\sqrt{2}+3\sqrt{2}-3=5\sqrt{2}-3\)

7 tháng 9 2021

a) (x+1)(x+4)

b) (x-1)(3x+7)

c) (x+3)(x+4)

17 tháng 11 2021

a. PTHDGD: \(\dfrac{2}{5}x-\dfrac{4}{3}=x+2\Leftrightarrow\dfrac{3}{5}x=-\dfrac{10}{3}\Leftrightarrow x=-\dfrac{50}{9}\Leftrightarrow y=-\dfrac{32}{9}\Leftrightarrow A\left(-\dfrac{50}{9};-\dfrac{32}{9}\right)\)

Vậy \(A\left(-\dfrac{50}{9};-\dfrac{32}{9}\right)\) là tọa độ giao điểm

b. PTHDGD: \(x-2=3x+4\Leftrightarrow x=-3\Leftrightarrow y=-5\Leftrightarrow B\left(-3;-5\right)\)

Vậy \(B\left(-3;-5\right)\) là tọa độ giao điểm

a: Xét (O) có

CM là tiếp tuyến có M là tiếp điểm

CN là tiếp tuyến có N là tiếp điểm

Do đó: CM=CN

hay C nằm trên đường trung trực của MN(1)

Ta có: OM=ON

nên O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OC là đường trung trực của MN