Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(2\left|x\right|+3\left|y\right|=13\Rightarrow\left|x\right|=\dfrac{13-3\left|y\right|}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\left|y\right|\le\dfrac{13}{3}\\\left|y\right|\text{ là số lẻ}\end{matrix}\right.\) \(\Rightarrow\left|y\right|=\left\{1;3\right\}\)
- Với \(\left|y\right|=1\Rightarrow\left|x\right|=5\Rightarrow\) có 4 cặp
- Với \(\left|y\right|=3\Rightarrow\left|x\right|=2\) có 4 cặp
Tổng cộng có 8 cặp số nguyên thỏa mãn
2.
\(x\left(y+3\right)=7y+21+1\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=1\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=1\)
\(\Rightarrow\left(x;y\right)=\left(6;-4\right);\left(8;-2\right)\) có 2 cặp
Đáp án là C
Vậy có tất cả 4 cặp (x, y) thỏa mãn yêu cầu của đề bài
\(\Rightarrow\left[{}\begin{matrix}x=1;y=-3\\x=-1;y=3\\x=3;y=-1\\x=-3;y=1\end{matrix}\right.\) Vậy...
Ta có: xy=-3
nên x,y là các ước của -3
\(\Leftrightarrow x,y\in\left\{1;-1;3;-3\right\}\)
Vì số cặp (x,y) nguyên thỏa mãn xy=-3 cũng chính là số ước của -3 nên số cặp (x,y) nguyên thỏa mãn xy=-3 là 4 cặp
a)Vì x,y ko âm =>x,y>0
=>ko tồn tại
b)Có vô số nghiệm x,y
Vd:1 và 0
-2 và 3
-3 và 4
.....
Đáp án cần chọn là: A
x 5 = 3 y ⇒ x . y = 5.3 = 15
Mà 15 = 5.3 = 15.1 = ( − 3 ) . ( − 5 ) = ( − 1 ) . ( − 15 ) và x,y∈Z,x > y nên (x;y)∈{(5;3),(15;1),(−3;−5),(−1;−15)}
Đáp án cần chọn là: D
ta có x 6 = 7 y ⇒ x . y = 6.7 = 42
mà
42 = 42.1 = 1.42 = 2.21 = 21.2 = 3.14 = 14.3 = 6.7 = 7.6 = − 42 . ( − 1 ) = ( − 1 ) . ( − 42 ) = ( − 2 ) . ( − 21 ) = ( − 21 ) . ( − 2 ) = ( − 3 ) . ( − 14 ) = ( − 14 ) . ( − 3 ) = ( − 6 ) . ( − 7 ) = ( − 7 ) . ( − 6 )
và x,y∈Z,x < y < 0 nên (x;y)∈{(−42;−1),(−21;−2),(−14;−3),(−7;−6)}
Ta có:\(\frac{5}{x}\)-\(\frac{y}{3}\)=\(\frac{1}{6}\)
\(\Rightarrow\)\(\frac{5}{x}\)=\(\frac{1}{6}\)+\(\frac{y}{3}\)
\(\Rightarrow\)\(\frac{5}{x}\)=\(\frac{1}{6}\)- \(\frac{2y}{6}\)
\(\Rightarrow\)5.6 = x.(2y+1)
\(\Rightarrow\)30 = x(2y+1)
Mà 2y+1 là số lẻ \(\Rightarrow\)2y+1 có 8 giá trị
Vậy có 8 giá trị x;y
nó dài lắm mik lười giải