Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(\left(50-6.x\right).18=2^3.3^2.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=8.9.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=360\)
\(\Leftrightarrow\)\(\left(50-6.x\right)=360\div18\)
\(\Leftrightarrow\)\(50-6.x=20\)
\(\Leftrightarrow\)\(6.x=50-20\)
\(\Leftrightarrow\)\(6.x=30\)
\(\Leftrightarrow\)\(x=5\)
\(b)\)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=7450\)
\(\Leftrightarrow\)\(100x+\left(1+2+3+...+100\right)=7450\)
\(\Leftrightarrow\)\(100x+5050=7450\)
\(\Leftrightarrow\)\(100x=7450-5050\)
\(\Leftrightarrow\)\(100x=2400\)
\(\Leftrightarrow\)\(x=24\)
b.
(x+1)+(x+2)+...+(x+100)=7450
=> 100x + (1+2+3+...+100)=7450
=>100x + (100+1).50=7450
=>100x=2400
=>x=24
A= 1+3+3^2+...+3^100
3A=3x( 1+3+3^2+...+3^100 )
3A-A=(3+3^2+...+3^101)-( 1+3+3^2+...+3^100 )
2A=3^101-1
A= \(\frac{3^{101}-1}{2}\)
B= 1+3^2+3^4+...+3^100
\(3^2B\)= 3^2x( 1+3^2+3^4+...+3^100)
9B-B= (3^2+3^4+..+3^102)-( 1+3^2+3^4+...+3^100 )
8B= 3^102-1
B=\(\frac{3^{102}-1}{8}\)
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
1) Từ 1 đến 100 có tất cả 100 số số hạng
=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)
=> A=5050
2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng
=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)
=> B=250
3) làm tương tự
4) S=\(1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1\)
5) làm tương tự
A=1+2+3+...+99+100
Số số hạng của dãyA là:
(100-1):1+1=100(số hạng)
Tổng của dãy A là :
(100+1).100:2=5050
B=1+3+5+...+97+99
Số số hạng của dãy B là:
(99-1):2+1=50 (số hạng)
Tổng của dãy B là:
(99+1).50:2=250
C=2+4+6+...+98+100
Số số hạng của dãy C là:
(100-2):2+1=50(số hạng)
Tổng của dãy C là:
(100+2).50:2=2550
S=1+2+22+23+...+29
2S= 2+22+23+...+29+210
2S-S=1-210
S=1-210
M=1+3+32+33+...+39
3M=3+32+33+...+39+310
3M-M=1-310
2M=1-310
M=(1-310):2
a)đặt là A
r xét 3A=32.33....3100
- A=31.32.33.....399
2A=3100-3
A=(3100-3)/2