Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2.x3:7=224
=>x5 :7=224
=>x5 =32
=>x5 =25 => x=2
b)x3 :xx +7=8
=>x3-x =1
=>x3-x =13-x
=> x=1
c) xn =1
=> xn=1n
=> x=1
k cho minh nhee:3
`3^{x} + 4^{2} = 19^{6} : 19^{3} . 19^{2} - 3 . 1^{2015}`
`<=>3^{x} + 4^{2} = 19^{6} : 19^{5} - 3 . 1`
`<=>3^{x} + 16 = 19 - 3`
`<=>3^{x} + 16 = 16`
`<=>3^{x} = 16 - 16`
`<=>3^{x} = 0`
`=>x \in \emptyset`
\(\Leftrightarrow x:3+367\cdot\left(-2\right)=-60\)
=>x:3=674
hay x=2022
Bài 1 :
\(A=3^0+3^1+3^2+3^3+...+3^{98}\)
\(A=\left(1+3+3^2\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\) ( Nhóm 3 số 1 nhé )
\(A=13+.....+3^{97}.13⋮13\left(\text{đ}pcm\right)\)
Bài 2 :
Theo ý a ta có :
\(A=13+.....+3^{97}.13+3^{99}+3^{100}\)
\(A=13+.....+3^{97}.13+3^{99}.4⋮̸13\)
Bài 3 :
Để D chia hết cho 2 thì x chia hết cho 2
1. \(A=3^0+3^1+3^2+...+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{96}\right)\)chia hết cho \(13\).
2. \(B=3^0+3^1+3^2+3^3+...+3^{100}\)
\(=1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)không chia hết cho \(13\).
3. \(D=\left(12.3+26.b+2022.c+x\right)\)chia hết cho \(2\)
\(\Leftrightarrow x⋮2\)(vì \(12.3⋮2,26b⋮2,2022c⋮2\))
\(a)\)\(\left(50-6.x\right).18=2^3.3^2.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=8.9.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=360\)
\(\Leftrightarrow\)\(\left(50-6.x\right)=360\div18\)
\(\Leftrightarrow\)\(50-6.x=20\)
\(\Leftrightarrow\)\(6.x=50-20\)
\(\Leftrightarrow\)\(6.x=30\)
\(\Leftrightarrow\)\(x=5\)
\(b)\)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=7450\)
\(\Leftrightarrow\)\(100x+\left(1+2+3+...+100\right)=7450\)
\(\Leftrightarrow\)\(100x+5050=7450\)
\(\Leftrightarrow\)\(100x=7450-5050\)
\(\Leftrightarrow\)\(100x=2400\)
\(\Leftrightarrow\)\(x=24\)
b.
(x+1)+(x+2)+...+(x+100)=7450
=> 100x + (1+2+3+...+100)=7450
=>100x + (100+1).50=7450
=>100x=2400
=>x=24