K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

j z

mik có thấy j âu

15 tháng 12 2021

mình có thấy nhưng ảnh hơi mờ nhé

13 tháng 11 2021

Bài 1

Hình 1 Tam giác ABC = ADE

Bài 2

Hình 2 Tam giác MRQ = NRS = QPT = OST

 

 

21 tháng 12 2021

C. (1; 3)

21 tháng 12 2021

giúp cko mình mấy câu kia với bạn mình đang ôn thi gấp

 

AH
Akai Haruma
Giáo viên
2 tháng 1

Câu 8:

a. Với $x,y$ là số nguyên thì $x, y-3$ cũng là số nguyên. Mà $x(y-3)=15$ nên ta có các TH:

TH1: $x=1, y-3=15\Rightarrow x=1; y=18$ (tm)

TH2: $x=-1, y-3=-15\Rightarrow x=-1; y=-12$ (tm)

TH3: $x=15; y-3=1\Rightarrow x=15; y=4$ (tm)

TH4: $x=-15; y-3=-1\Rightarrow x=-15; y=2$ (tm)

TH5: $x=3, y-3=5\Rightarrow x=3; y=8$ (tm)

TH6: $x=-3; y-3=-5\Rightarrow x=-3; y=-2$ (tm)

TH7: $x=5; y-3=3\Rightarrow x=5; y=6$ (tm)

TH8: $x=-5; y-3=-3\Rightarrow x=-5; y=0$ (tm)

AH
Akai Haruma
Giáo viên
2 tháng 1

Câu 8:

b. 

$xy-2y+3(x-2)=7$

$\Rightarrow y(x-2)+3(x-2)=7$

$\Rightarrow (x-2)(y+3)=7$

Do $x,y$ nguyên nên $x-2, y+3$ nguyên. Mà tích của chúng bằng $7$ nên ta có các TH sau:

TH1: $x-2=1, y+3=7\Rightarrow x=3; y=4$ (tm)

TH2: $x-2=-1; y+3=-7\Rightarrow x=1; y=-10$ (tm)

TH3: $x-2=7, y+3=1\Rightarrow x=9; y=-2$ (tm)

TH4: $x-2=-7; y+3=-1\Rightarrow x=-5; y=-4$ (tm)

27 tháng 11 2021

Bài nào ạ. Ảnh bị lỗi.

20 tháng 11 2021

A

20 tháng 11 2021

a

15 tháng 8 2021

Ba câu cuối thôi ạ

Câu 2: D

Câu 3: C

Câu 4: D

a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có

DB=EC
góc DBH=góc ECK

=>ΔDBH=ΔECK

=>HB=CK

b; Xét ΔAHB và ΔAKC có

AB=AC
góc ABH=góc ACK

BH=CK

=>ΔAHB=ΔAKC

c: Xét ΔADE có AB/AD=AC/AE

nên BC//DE

=>HK//DE

d: Xét ΔAHE và ΔAKD có

AH=AK

góc EAH chung

AE=AD

=>ΔAHE=ΔAKD

Bài 2:

a: Xét ΔABC có

BI,CI là các đường phân giác

BI cắt CI tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

b: Ta có: \(\widehat{DIB}=\widehat{IBC}\)(hai góc so le trong, DI//BC)

\(\widehat{DBI}=\widehat{IBC}\)(BI là phân giác của góc DBC)

Do đó: \(\widehat{DIB}=\widehat{DBI}\)

=>ΔDIB cân tại D

c: Ta có: \(\widehat{EIC}=\widehat{ICB}\)(hai góc so le trong, EI//BC)

\(\widehat{ECI}=\widehat{ICB}\)(CI là phân giác của góc ECB)

Do đó: \(\widehat{EIC}=\widehat{ECI}\)

=>ΔEIC cân tại E

d: Ta có: ΔDIB cân tại D

=>DB=DI

Ta có: ΔEIC cân tại E

=>EI=EC

Ta có: DI+IE=DE

mà DI=DB

và EC=EI

nên DB+EC=DE

Bài 1:

a: Xét ΔABC có

BE,CF là các đường phân giác

BE cắt CF tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

=>AI là phân giác của góc BAC
b: ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là phân giác của góc ABC)

\(\widehat{ACF}=\widehat{FCB}=\dfrac{\widehat{ACB}}{2}\)(CF là phân giác của góc ACB)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABE}=\widehat{EBC}=\widehat{ACF}=\widehat{FCB}\)

c: ta có: \(\widehat{EBC}=\widehat{FCB}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

d: Xét ΔABE và ΔACF có

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

=>BE=CF

e:

Ta có: ΔAEB=ΔAFC

=>AE=AF

Ta có: AE+EC+AC
AF+FB=AB

mà AE=AF 

và AC=AB

nên EC=FB

Xét ΔFIB và ΔEIC có

FB=EC

\(\widehat{FBI}=\widehat{ECI}\)

BI=CI

Do đó: ΔFIB=ΔEIC