Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b= (1+1/6) + (1/2+1/5) + (1/3+1/4)
a/b= 7/6 + 7/10 + 7/12
a/b= 7(1/6+1/10+1/12)
Vì 6x10x12 khong la boi so cua 7 => a/b chia het cho 7 <=> a chia het cho 7 (dpcm)
A = 32010 + 52010 cmr A ⋮ 13
A = 32010 + 52010 = (33)670 + (54)502.52 = 27670 + 625502.25
27 \(\equiv\) 1 (mod 13) ⇒ 27670 \(\equiv\) 1670 (mod 13) ⇒ 27670 \(\equiv\)1 (mod 13)
625 \(\equiv\) 1(mod 13) ⇒625502 \(\equiv\) 1502(mod 13) ⇒ 625502\(\equiv\) 1(mod 13)
25 \(\equiv\) -1 (mod 13)
625502 \(\equiv\) 1 (mod 13)
Nhân vế với vế ta được: 625502.25 \(\equiv\) -1 (mod 13)
Mặt khác ta có: 27670 \(\equiv\) 1 (mod 13)
Cộng vế với vế ta được:27670 + 625502.25 \(\equiv\) 1 -1 (mod 13 )
27670 + 625502.25 \(\equiv\) 0 (mod 13)
⇒ 27670 + 625502.25 ⋮ 13
⇒ A = 32010 + 52010 = 27670 + 625502.25 ⋮ 13 (đpcm)
a ) Chia 5 dư 4 chỉ có thể có tận cùng là 4 hoặc 9
Vì chia hết cho 2 nên y = 4
52x4 chia hết cho 9 => x = 7
b ) Chia 5 dư 2 chỉ có thể có tận cùng là 2 hoặc 7
Vì chia hết cho 2 nên y = 2
12x52 chia hết cho 9 => x = 8
a chia hết cho b => a=k.b, k thuộc Z
b chia hết cho c => b=m.c, m thuộc Z
Suy ra: a=k.b=k.m.c chia hết cho c
Ta có : 2 + 22 + 23 + ..... + 230
= (2 + 22 + 23) + ..... + (228 + 229 + 230)
= 2.(1 + 2 + 22) + ...... + 228(1 + 2 + 22)
= 2.7 + ..... + 228.7
= 7(2 + ..... + 228) chia hết cho 7
2+22+23+24+...+230=(2+22+23)+(24+25+26)+...+(228+229+230)
= 2(1+2+22)+24(1+2+22)+...+228(1+2+22)=
= (1+2+22)(2+24+...+228)=7.(2+24+...+228) => Chia hết cho 7
\(M=2+2^2+2^3+...+2^{20}\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(M=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)
\(M=2\cdot15+...+2^{17}\cdot15\)
\(M=15\cdot\left(2+...+2^{17}\right)⋮15\left(đpcm\right)\)
Ta có ;
M = 2 + 22+23+....+220
M = ( 2 + 22+23+24 ) + ....+ ( 217 + 218 + 219 + 220)
M = 2(1 + 2 + 22 + 23)+....+217(1 + 2 + 22 + 23 )
M = 2 . 15 + .... + 217 . 15
Vì 15 chia hết cho 15
Nên 2. 5 + ...+217 . 15
Vậy nên M chia hết cho 15
\(\Leftrightarrow\orbr{\begin{cases}x-3=7\\x-3=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-4\end{cases}}\)
Vậy \(x\in\left\{-4;10\right\}\)
|x - 3| = 7
Xét 2 trường hợp:
TH1: x - 3 = 7
x = 7 + 3
x = 10
TH2: x - 3 = -7
x = -7 + 3
x = -4
Vậy: ...
\(A=2+2^2+2^3+.........+2^{60}\)
\(\Rightarrow2A=2.\left(2+2^2+2^3+.......+2^{60}\right)\)
\(\Leftrightarrow2A=2^2+2^3+........+2^{60}+2^{61}\)
\(\Leftrightarrow2A-A=\left(2^2+2^3+......+2^{60}+2^{61}\right)-\left(2+2^2+2^3+........+2^{60}\right)\)
\(\Leftrightarrow1A=2^{61}-2\)
Mà 2^61 có tận cùng là chữ số 2 nên 2^61 - 2 sẽ có tận cùng là chữ số 0 chia hết cho 5
Vậy A chia hết cho 5
\(A=2+2^2+2^3+......+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.......+\left(2^{59}+2^{60}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+.......+2^{59}.\left(1+2\right)\)
\(A=2.3+2^3.3+.......+2^{59}.3\)
\(A=3.\left(2+2^3+....+2^{59}\right)\)
A chia hết cho 3
\(A=2+2^2+2^3+.......+2^{60}\)
\(A=\left(2+2^2+2^3\right)+.........+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2\right)+......+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+....+2^{58}.7=7.\left(2+....+2^{58}\right)\)
A chia hết cho 7
Nhớ k cho mình nhé! Cảm ơn!!!