\(\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2022

<=> \(\frac{1}{5X}\)=-1

<=> 5X=-1

<=>5x+1=0. Pt này có a=5, b =1

           

13 tháng 1 2022

xl bạn Nguyễn Gia Huy nhe

hôm đó mình tích nhầm đúng cho bạn (câu trả lời của bạn sai) chứ câu nè ko phải bậc nhất 1 ẩn vì biến x ở dưới mẫu nhé

6 tháng 2 2022

A

C

D

E

6 tháng 2 2022

Giải thích rõ hơn dc ko vậy

 

27 tháng 12 2017

Lần lượt áp dụng bất đẳng thức Cô - si có 3 và 4 số, ta có:

\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3.\sqrt[3]{\frac{a}{18}.\frac{b}{24}.\frac{2}{ab}}=\frac{1}{2}\)

\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ac}\ge3.\sqrt[3]{\frac{a}{9}.\frac{c}{6}.\frac{2}{ac}}=1\)

\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3.\sqrt[3]{\frac{b}{16}.\frac{c}{8}.\frac{2}{bc}}=\frac{3}{4}\)

\(\frac{a}{9}+\frac{b}{12}+\frac{c}{6}+\frac{8}{abc}\ge4.\sqrt[4]{\frac{a}{9}.\frac{b}{12}.\frac{c}{6}.\frac{8}{abc}}=\frac{4}{3}\)

\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}.\frac{13b}{24}}\ge2\sqrt{\frac{13.13.12}{18.24}}=\frac{13}{3}\)

\(\frac{13c}{24}+\frac{13b}{48}\ge2\sqrt{\frac{13c}{24}.\frac{13b}{48}}\ge2\sqrt{\frac{13.13.8}{24.48}}=\frac{13}{6}\)

Cộng vế với vế ta có: 

\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\)

29 tháng 12 2017

Hoàng Thị Thu Huyền giỏi thế bạn học thế nào vậy

Hướng dẫn giải:

Các phương trình là phương trình bậc nhất là:

1 + x = 0 ẩn số là x

1 - 2t = 0 ấn số là t

3y = 0 ẩn số là y

24 tháng 2 2020

C nhé bạn.

A bậc -1

B bậc 0

D bậc 2 nhé !!!

cho các phương trình sau,phương trình bậc nhất 1 ẩn là:

A.1x -3 = 0      B,  0x + 3 = 0         C, x-1 = 0          D, x + x  -2 = 0

k cho mk nha

16 tháng 5 2019

a) \(5x+6=0\Leftrightarrow x=\frac{-6}{5}\)

b) \(7x+8=0\Leftrightarrow x=\frac{-8}{7}\)

16 tháng 5 2019

v , mấy CTV ...

6 tháng 7 2019

Em tham khảo link:Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath

Ta có bổ đề

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

ÁP DỤNG BỔ ĐỀ VÀO P ta có

\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc.\frac{3}{abc}=3\)

Vậy P=3