Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{2}=\sqrt{3}\) (vi \(\sqrt{3}>\sqrt{2}\) )
b,\(3\sqrt{5}-\left(\sqrt{5}-1\right)\) =\(3\sqrt{5}-\sqrt{5}+1=2\sqrt{5}+1\)
c,\(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
câu đầu bạn xem lại đề đi nha
các phần còn lại
b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)
c)tính từng căn nha
\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)
\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)
\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)
thay vào tính C đc C=2
d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)
=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)
=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)
1: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{2x-2\sqrt{2x-1}}-\sqrt{2x+2\sqrt{2x-1}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{2x-1}-1\right|-\left|\sqrt{2x-1}+1\right|\right)\)
TH1: x>=1
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{2x-1}-1-\sqrt{2x-1}-1\right)=-\sqrt{2}\)
TH2: 1/2<=x<1
\(A=\dfrac{1}{\sqrt{2}}\left(1-\sqrt{2x-1}-\sqrt{2x-1}-1\right)=-\sqrt{4x-2}\)
2:
\(=\sqrt{x-1+6\sqrt{x-1}+9}-\sqrt{x-2-2\sqrt{x-2}+1+3}\)
\(=\sqrt{x-1}+3-\sqrt{\left(\sqrt{x-2}-1\right)^2+3}\)
a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
= \(-1+\sqrt{100}\)
= -1 +10
=9
b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1 (1)
Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)
Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)
Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
\(1,\sqrt{4\left(a-4\right)^2}\left(dkxd:a\ge4\right)\)
\(=\sqrt{4}.\sqrt{\left(a-4\right)^2}\)
\(=\sqrt{2^2}.\left|a-4\right|\)
\(=2\left(a-4\right)\)
\(=2a-8\)
\(2,\sqrt{9\left(b-5\right)^2}\left(dkxd:b< 5\right)\)
\(=\sqrt{9}.\sqrt{\left(b-5\right)^2}\)
\(=\sqrt{3^2}.\left|b-5\right|\)
\(=3\left(-b+5\right)\)
\(=-3b+15\)
a,\(ĐK:a\ge1\)
\(\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)
\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)
\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)
Với \(\sqrt{a-1}\ge1\Leftrightarrow a\ge2\) thì \(\left|\sqrt{a-1}-1\right|=\sqrt{a-1}-1\)
\(\Rightarrow\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}=\sqrt{a-1}+1+\sqrt{a-1}-1=2\sqrt{a-1}\)
Với \(0\le\sqrt{a-1}< 1\)\(\Leftrightarrow1\le a< 2\) thì
\(\left|\sqrt{a-1}-1\right|=1-\sqrt{a-1}\)
\(\Rightarrow\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}=\sqrt{a-1}+1+1-\sqrt{a-1}=2\)
Câu b tương tự:\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)
\(=\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}\)
\(=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)
a) \(=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}
\)
\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}=\sqrt{a-1}+1+\sqrt{a-1}-1=2\sqrt{a-1}\)(a>=1)
b)\(=\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\sqrt{a-2}+2+\sqrt{a-2}-2=2\sqrt{a-2}\)
HÌNH NHƯ = 1,414213562 NHA tịch thiên du phong !
K VÀ KB NHA
\(\frac{S}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
=\(\frac{2+\sqrt{3}}{2+1+\sqrt{3}}+\frac{2-\sqrt{3}}{2+1-\sqrt{3}}\) =\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
=\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\) =\(\frac{6}{6}=1\)
SUY RA S=\(\sqrt{2}\)
\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\\ =\sqrt{2\left(2+\sqrt{2}\right)}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\\ =\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{4-\left(2+\sqrt{2}\right)}\\ =\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\\ =\sqrt{2}.\sqrt{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\\ =\sqrt{2}.\sqrt{4-2}\\ =2\)