K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

a) bn lm đc rồi nên mk bỏ qua nhé

b)  Áp dụng định lý Putago vào tam giác vuông ABC ta có

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=21^2+28^2=1225\)

\(\Leftrightarrow\)\(BC=\sqrt{1225}=35\)cm

\(\Delta ABC\)vuông tại  \(A\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(AM=\frac{1}{2}BC=17,5\)cm

\(\Delta HBA~\Delta ABC\) (câu a)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm

c)  \(\Delta BAC\)có    \(EM\)\(//\)\(AC\) (cùng vuông góc với AB)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{CM}{CB}\) (1)

   \(\Delta CAB\) có   \(MF\)\(//\)\(AB\) (cùng vuông góc với AC)

\(\Rightarrow\) \(\frac{AF}{AC}=\frac{BM}{BC}\) (2)

   \(\Delta ABC\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(MB=MC\)(3)

Từ (1), (2) và (3)  suy ra:

   \(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\)\(EF\)\(//\)\(BC\)  (định lý Ta-lét đảo)

26 tháng 4 2021

cảm ơn ạ

 

17 tháng 8 2017

Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng j: Đoạn thẳng [A, H] Đoạn thẳng k: Đoạn thẳng [H, M] Đoạn thẳng l: Đoạn thẳng [N, H] Đoạn thẳng m: Đoạn thẳng [M, N] Đoạn thẳng n: Đoạn thẳng [A, N] Đoạn thẳng p: Đoạn thẳng [A, M] Đoạn thẳng q: Đoạn thẳng [E, F] Đoạn thẳng r: Đoạn thẳng [A, I] Đoạn thẳng t: Đoạn thẳng [I, D] A = (9.91, 10.29) A = (9.91, 10.29) A = (9.91, 10.29) B = (3.97, -8.27) B = (3.97, -8.27) B = (3.97, -8.27) C = (33.4, -8.47) C = (33.4, -8.47) C = (33.4, -8.47) Điểm H: Giao điểm đường của i, g Điểm H: Giao điểm đường của i, g Điểm H: Giao điểm đường của i, g Điểm M: H đối xứng qua f Điểm M: H đối xứng qua f Điểm M: H đối xứng qua f Điểm N: H đối xứng qua h Điểm N: H đối xứng qua h Điểm N: H đối xứng qua h Điểm E: Giao điểm đường của f, k Điểm E: Giao điểm đường của f, k Điểm E: Giao điểm đường của f, k Điểm F: Giao điểm đường của h, l Điểm F: Giao điểm đường của h, l Điểm F: Giao điểm đường của h, l Điểm I: Trung điểm của m Điểm I: Trung điểm của m Điểm I: Trung điểm của m Điểm D: Giao điểm đường của s, q Điểm D: Giao điểm đường của s, q

a) Do EM = EH và AE vuông góc MH tại E nên AB là đường trung trực của MH. Tương tự AC là trung trực HN.

b) Do  AB là đường trung trực của MH nên AM = AH. Tương tự AH = AN

Vậy AM = AN hay tam giác AMN cân tại A.

c) Xét tam giác HMN có E, F lần lượt là trung điểm HM, HN nên EF là đường trung bình tam giác.

Vậy EF // MN.

d) Tam giác cân AMN có I là trung điểm MN nên \(AI⊥MN\)

Lại có MN //EF nên \(AI⊥EF.\)

16 tháng 7 2018

a) Ta thấy AB vuông góc với MH tại trung điểm E của MH nên AB là đường trung trực của MH.

 Ta thấy AC vuông góc với NH tại trung điểm F của NH nên AC là đường trung trực của NH.

b) Do AB là trung trực của MH nên AM = AH.

Tương tự AN = AH. Vậy nên AM = AN hay tam giác AMN cân tại A.

c) Xét tam giác HMN có E là trung điểm MH, F là trung điểm HN nên EF là đường trung bình tam giác HMN.

Suy ra EF // MN.

d) Do tam giác AMN cân tại A nên trung tuyến AI đồng thời là đường cao. Vậy AI vuông góc MN.

Lại có MN // EF nên AI  vuông góc EF.

16 tháng 7 2018

Hình vẽ.

2 tháng 2 2021

Các bạn giúp mình câu này nhanh nha 

2 tháng 2 2021

A B C H E F M N

Theo tính chất đường thẳng song song : 

\(AK=KI=IH\)( gt )

=> AE = EM = MB 

=> AF = FN = NC 

Theo bài ra ta có : \(\frac{MN}{BC}=\frac{AM}{MB}=\frac{2MB}{MB}=2\)cm 

\(\frac{EF}{BC}=\frac{AE}{EB}=\frac{AE}{2AE}=\frac{1}{2}\)cm 

hay \(2EF=BC\)(*) 

Ta có : \(S_{ABC}=\frac{1}{2}AH.BC=90\)( gt ) 

\(\Delta AMN\)có EF là đường trung bình ( AE = EM ; AF = FN ) 

Suy ra : EF // MN và EF = 1/2 MN 

Ta có :  \(S_{MNEF}=\frac{\left(EF+MN\right).IK}{2}\)mà \(IK=\frac{1}{3}AH\)

\(=\frac{\left(EF+MN\right).\frac{AH}{3}}{2}=\frac{\left(EF+2EF\right).\frac{AH}{3}}{2}\)

\(=\frac{EF.AH}{2}\)mà \(2EF=BC\)cmt (*)

\(=\frac{\frac{BC}{2}.AH}{2}=\frac{BC.AH}{4}\)

Vậy \(S_{MNEF}=\frac{180}{4}=45\)cm2

30 tháng 11 2014

a:32-7x+2

=3x2-6x-x+2=(3x2-6x)-(x-2)

=3x(x-2)-(x-2)=(x-2)(3x-1).

 

 

1 tháng 12 2014

à wen phần b:x4-64=(x2)2-82