K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

Mình cảm ơn ạ!

c) Để A>-1 thì A+1>0

\(\Leftrightarrow\dfrac{1-x}{x+1}+1>0\)

\(\Leftrightarrow\dfrac{1-x+x+1}{x+1}>0\)

\(\Leftrightarrow\dfrac{2}{x+1}>0\)

mà 2>0

nên x+1>0

hay x>-1

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\)

a) Ta có: \(A=\left(\dfrac{x+1}{x-1}-\dfrac{1-x}{x+1}+\dfrac{4x^2}{1-x^2}\right):\dfrac{2x^2-2}{x^2-2x+1}\)

\(=\left(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{4x^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2\left(x^2-1\right)}{\left(x-1\right)^2}\)

\(=\dfrac{x^2+2x+1+x^2-2x+1-4x^2}{\left(x-1\right)\left(x+1\right)}:\dfrac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)

\(=\dfrac{-2x^2+2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x-1}{2\left(x+1\right)}\)

\(=\dfrac{-2\cdot\left(x-1\right)}{2\left(x+1\right)}\)

\(=\dfrac{1-x}{x+1}\)

1 tháng 11 2021

Bài 1:

\(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)

Bài 2:

\(2\left(x+3\right)-x^2-3x=0\)

\(\Rightarrow2\left(x+3\right)-x\left(x+3\right)=0\Rightarrow\left(x+3\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Bài 3:

\(A=4x-x^2=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\le4\)

\(maxA=4\Leftrightarrow x=2\)

Bài 4:

\(A\left(x\right)=2x^3-7x^2+5x+m=x^2\left(2x-3\right)-2x\left(2x-3\right)-x+m\)

\(=\left(2x-3\right)\left(x^2-2x\right)-x+m⋮B\left(x\right)=2x-3\)

\(\Rightarrow-x+m=0\Rightarrow m=x\)

Bài 5:

\(x+y=3\Rightarrow\left(x+y\right)^2=9\Rightarrow x^2+y^2=9-2xy=9-2.2=5\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=9\)

1 tháng 11 2021

Mk cảm ơn ạ

22 tháng 12 2021

\(a,\dfrac{x}{3x+6}=\dfrac{x}{3\left(x+2\right)}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)^2}\\ \dfrac{5}{x^2+4x+4}=\dfrac{5}{\left(x+2\right)^2}=\dfrac{15}{3\left(x+2\right)^2}\\ b,\dfrac{5}{x^2-y^2+2x+1}=\dfrac{5}{\left(x-y+1\right)\left(x+y+1\right)}=\dfrac{5x}{x\left(x-y+1\right)\left(x+y+1\right)}\\ \dfrac{6}{x\left(x+y+1\right)}=\dfrac{6\left(x-y+1\right)}{x\left(x-y+1\right)\left(x+y+1\right)}\)

\(c,\dfrac{7x}{x^4-1}=\dfrac{7x}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}=\dfrac{7x\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\\ \dfrac{5x}{x^4+2x^2+1}=\dfrac{5x}{\left(x^2+1\right)^2}=\dfrac{5x\left(x-1\right)\left(x+1\right)}{\left(x^2+1\right)^2\left(x-1\right)\left(x+1\right)}\)

16 tháng 3 2020

8) \(\left(x+4\right)\left(6x-12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\6x-12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\6x=12\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\)

Vậy \(x\in\left\{-4;2\right\}\)

11) \(\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}-0\\3x=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}\\x=-\frac{1}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{16}\\x=-\frac{1}{9}\end{cases}}}\)

Vậy \(x\in\left\{\frac{7}{16};-\frac{1}{9}\right\}\)

16 tháng 3 2020

12) \(3x-2x^2=0\)

\(\Leftrightarrow x\left(3-2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Vậy \(x\in\left\{0;\frac{3}{2}\right\}\)

13) \(5x+10x^2=0\)

\(\Leftrightarrow5x\left(1+2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)

Vậy \(x\in\left\{0;-\frac{1}{2}\right\}\)

2A:

Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

góc ADH=góc CBK

=>ΔAHD=ΔCKB

=>AH=CK

AH vuông góc BD

CK vuông góc BD

=>AH//CK

Xét tứ giác AHCK có

AH//CK

AH=CK

=>AHCK là hình bình hành

11 tháng 8 2023

làm hết đc ko bạn

 

8 tháng 7 2018

\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(x^3-3^3+x\left(2^2-x^2\right)=1\)

\(x^3-27+4x-x^3=1\)

\(4x-27=1\)

\(4x=28\)

\(x=7\)

Vậy x = 7

8 tháng 7 2018

\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Rightarrow x^3-3^3+x\left(2^2-x^2\right)=1\)

\(\Rightarrow x^3-27+4x-x^3=1\)

\(\Rightarrow4x-27=1\)

\(\Rightarrow4x=28\)

\(\Rightarrow x=7\)

Vậy \(x=7\)

1: Xét tứ giác BHCK có 

CH//BK

BH//CK

Do đó: BHCK là hình bình hành

Suy ra: Hai đường chéo BC và HK cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

2: Gọi giao điểm của IH và BC là O

Suy ra: IH\(\perp\)BC tại O và O là trung điểm của IH

Xét ΔHIK có

O là trung điểm của HI

M là trung điểm của HK

Do đó: OM là đường trung bình của ΔHIK

Suy ra: OM//IK 

hay BC//IK

mà BC\(\perp\)IH

nên IH\(\perp\)IK

Xét ΔHOC vuông tại O và ΔIOC vuông tại O có

OC chung

HO=IO

Do đó: ΔHOC=ΔIOC

Suy ra: CH=CI

mà CH=BK

nên CI=BK

Xét tứ giác BCKI có IK//BC

nên BCKI là hình thang

mà CI=BK

nên BCKI là hình thang cân

1 tháng 12 2018

Ai giup em voi a :)

1 tháng 12 2018

đéo hiểu đề