Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn \(\frac{n^2+2n+1}{n+23}\) có giá trị nguyên thì:
\(n^2+2n+1⋮n+23\Rightarrow n^2+2n+1-n.\left(n+23\right)⋮n+23\)
\(\Rightarrow n^2+2n+1-n^2-23n⋮n+23\)
\(\Rightarrow-21n+1⋮n+23\Rightarrow-21n+1+21\left(n+23\right)⋮n+23\)
\(\Rightarrow-21n+1+21n+23⋮n+23\)
\(\Rightarrow24⋮n+23\Rightarrow n+23\inƯ\left(24\right)\)
Mà n lớn nhất nên: n+23 lớn nhất => n+23 = 24 => n=1
Vậy n = 1
Cho mình xin lỗi:
\(-21n+1⋮n+23\Rightarrow-21n+1+21\left(n+23\right)⋮n+23\)
\(\Rightarrow-21n+1+21n+483⋮n+23\Rightarrow484⋮n+23\)
Mà n là số nguyên dương lớn nhất nên: n+23=484 => n = 461
Vậy n = 461
a, \(A=\frac{6n-1}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=\frac{2.\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để A có giá trị là số nguyên
=>5/3n+2 phải là số nguyên
=>5 chia hết cho 3n+2
=>3n+2 thuộc Ư(5)={-1;1;-5;5}
Vì 3n+2 là số chia cho 3 dư 2
=>3n+2=5
=>3n=5-2
=>3n=3
=>n=3:3
=>n=1
Ý, Nguyễn Lê Thanh Hà là nick cũ của mik nè.Tuần này lại mất thêm 2 nick. Tổng cộng mik mất nick 3 lần r mà chẳng lấy lại dc! Ko bít đứa nào hack r đổi mật khẩu nx lun!!
a) Đặt \(A=\frac{n-5}{n-3}=\frac{n-3-2}{n-3}=\frac{n-3}{n-3}-\frac{2}{n-3}=1-\frac{2}{n-3}\)
Để A là số nguyên
=> 2/n-3 là số nguyên
=> 2 chia hết cho n - 3
=> n - 3 thuộc Ư(2)={1;-1;2;-2}
...
rùi bn tự thay giá trị của n -3 vào để tìm n nhé!
b) Đặt \(B=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=\frac{2.\left(n+1\right)-1}{n+1}=2-\frac{1}{n+1}\)
Để B là số nguyên
=> 1/n+1 là số nguyên
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư(1) = { 1;-1}
...
Ta có:
2n+3/n-1= 2(n-1)+4 / n+1= 2(n-1) /n-1+4/n-1=2+4/n-1
Để p/s có giá trị nguyên=>4chia hết cho n-1 hay n-1 thuộc Ư(4)=(1;-1;2;-2;4;-4)
=>n-1=1=>n=2
n-1=-1=>n=-0
n-1=2=>n=3
n-1=-2=>n=--1
n-1=4=>n=5
n-1=-4=>n=-3
\(\frac{2n+3}{n-1}=\frac{2n-2+5}{n-1}=\frac{2\left(n-1\right)+5}{n-1}\)
để phân số có giá trị nguyên thì 2(n - 1) + 5 \(⋮\) n - 1 và n - 1 \(\ne\) 0 hay n \(\ne\) 1(vì mẫu số phải khác 0)
hay 5 \(⋮\)n - 1
vậy \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
vậy \(n\in\left\{2;0;6;-4\right\}\)(thỏa)
Đặt \(A=\dfrac{n^2+2n+1}{n+23}\)
\(A=\dfrac{n^2+2n+1}{n+23}=\dfrac{n\left(n+23\right)-21\left(n+23\right)+484}{n+23}=\left(n-21\right)+\dfrac{484}{n+23}\)
Để \(A\in Z\) thì \(\dfrac{484}{n+23}\in Z\) suy ra \(n+23\inƯ\left(484\right)\)
Để n lớn nhất thì n+23 lớn nhất suy ra \(n+23=484\Rightarrow n=461\)