Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow a}\frac{sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}}.cos\left(\frac{x+a}{2}\right)=1.cos\left(\frac{a+a}{2}\right)=cosa\)
b/ \(\lim\limits_{x\rightarrow\pi}\frac{sin\frac{\pi}{2}-sin\frac{x}{2}}{\pi-x}=\lim\limits_{x\rightarrow\pi}\frac{sin\left(\frac{\pi-x}{4}\right)}{\frac{\pi-x}{4}}.\frac{cos\left(\frac{\pi+x}{4}\right)}{2}=\frac{cos\left(\frac{\pi+\pi}{4}\right)}{2}=0\)
c/ Đặt \(x-\frac{\pi}{3}=a\Rightarrow x=a+\frac{\pi}{3}\)
\(\lim\limits_{a\rightarrow0}\frac{sina}{1-2cos\left(a+\frac{\pi}{3}\right)}=\lim\limits_{a\rightarrow0}\frac{sina}{1-cosa+\sqrt{3}sina}\)
\(=\lim\limits_{a\rightarrow0}\frac{2sin\frac{a}{2}cos\frac{a}{2}}{-2sin^2\frac{a}{2}+2\sqrt{3}sin\frac{a}{2}cos\frac{a}{2}}=\lim\limits_{a\rightarrow0}\frac{cos\frac{a}{2}}{-sin\frac{a}{2}+\sqrt{3}cos\frac{a}{2}}=\frac{1}{\sqrt{3}}\)
d/Ta có: \(tana-tanb=\frac{sina}{cosa}-\frac{sinb}{cosb}=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)
Áp dụng:
\(\lim\limits_{x\rightarrow a}\frac{\left(tanx-tana\right)\left(tanx+tana\right)}{\frac{sin\left(x-a\right)}{cos\left(x-a\right)}}=\lim\limits_{x\rightarrow a}\frac{sin\left(x-a\right)\left(tanx+tana\right).cos\left(x-a\right)}{sin\left(x-a\right).cosx.cosa}=\lim\limits_{x\rightarrow a}\frac{\left(tanx+tana\right).cos\left(x-a\right)}{cosx.cosa}\)
\(=\frac{2tana}{cos^2a}\)
ĐKXĐ: \(cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)
\(\dfrac{tan^2x+tanx}{tan^2x+1}=\dfrac{\sqrt{2}}{2}sin\left(\dfrac{\pi}{4}+x\right)\)
\(\Leftrightarrow cos^2x\left(tan^2x+tanx\right)=\dfrac{\sqrt{2}}{2}\left(sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx\right)\)
\(\Leftrightarrow sin^2x+sinxcosx=\dfrac{1}{2}\left(sinx+cosx\right)\)
\(\Leftrightarrow sinx\left(sinx+cosx\right)-\dfrac{1}{2}\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-\dfrac{1}{2}\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\\sqrt{2}.sin\left(x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\)
có thể giải thích rõ ở dấu tương đương 1 và 2 cho em hiểu làm sao để rút gọn nó thành như vậy được không ạ
\(\left(sin\dfrac{x}{2}-cox\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2sin5x+1\)
⇔\(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}-2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=2sin5x+1\)
⇔\(1-sinx+\sqrt{3}cosx=2sin5x+1\)
⇔\(sin\left(\dfrac{\Pi}{3}-x\right)=sin5x\)
\(2sinx\left(\sqrt{3}cosx+sinx+2sin3x\right)=1\)
⇔\(2\sqrt{3}sinxcosx+2sin^2x+4sinxsin3x=1\)
⇔\(\sqrt{3}sin2x+1-cos2x+cos2x-2cos4x=1\)
⇔\(\sqrt{3}sin2x+cos2x=2cos4x\)
⇔\(cos\left(2x-\dfrac{\Pi}{3}\right)=cos4x\)
\(sin3x=cos\left(x+3\right)\)
\(\Leftrightarrow cos\left(x+3\right)=cos\left(\frac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=\frac{\pi}{2}-3x+k2\pi\\x+3=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{4}+\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{3}{2}+\frac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=\frac{2}{3}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=arcsin\left(\frac{2}{3}\right)+k2\pi\\2x+\frac{\pi}{3}=\pi-arcsin\left(\frac{2}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+\frac{1}{2}arcsin\left(\frac{2}{3}\right)+k\pi\\x=\frac{\pi}{3}-\frac{1}{2}arcsin\left(\frac{2}{3}\right)+k\pi\end{matrix}\right.\)