Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
b. Ta có ∠GHE=360°-(90°+70°+60°)=140°
mà ∠GHE+x=180°⇒x=180°-140°=40°
c. Ta có 2x=360°-(65°+95°)=200°⇒x=200°:2=100°
d. Ta có ∠LKJ=180°-120°=60°
⇒x=360°-(95°+120°+60°)=85°
Bài 4:
c) Ta có: \(\dfrac{x^3}{8}+\dfrac{x^2y}{2}+\dfrac{xy^2}{6}+\dfrac{y^3}{27}\)
\(=\left(\dfrac{x}{2}\right)^3+3\cdot\left(\dfrac{x}{2}\right)^2\cdot\dfrac{y}{3}+3\cdot\dfrac{x}{2}\cdot\left(\dfrac{y}{3}\right)^2+\left(\dfrac{y}{3}\right)^3\)
\(=\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^3\)
\(=\left(\dfrac{-1}{2}\cdot8+\dfrac{1}{3}\cdot6\right)^3=\left(-4+2\right)^3=-8\)
b: (3x-5)(2x+9)=0
=>3x-5=0 hoặc 2x+9=0
=>x=5/3 hoặc x=-9/2
c: \(\Leftrightarrow\left(x-9\right)^2+\left(x+9\right)\left(x-9\right)=0\)
=>(x-9)(x-9+x+9)=0
=>2x(x-9)=0
=>x=0 hoặc x=9
d: \(\Leftrightarrow x-5\left(2x-3\right)=3\)
=>x-10x+15=3
=>-9x+15=3
=>-9x=-12
hay x=4/3(nhận)
c: Gọi bốn số nguyên liên tiếp là x;x+1;x+2;x+3
Ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
\(d,M=\left(x^2-4xy+4y^2\right)-2\left(x-2y\right)+1+9\\ M=\left(x-2y\right)^2-2\left(x-2y\right)+1+9\\ M=\left(x-2y+1\right)^2+9\ge9\\ M_{min}=9\Leftrightarrow x=2y-1\)
a, Ta có : B+C=200
-
B+D=180
Trừ vế vs vế 2 đẳng thức trên ta được:
C-D=20
mà C+ D=120
Công vế vs vế 2 đẳng thức trên ta được:
2C=140
=> C=70
Vậy từ C ta tính được B=130,D=50 và A=110
a: \(x^3y+x-y-1\)
\(=\left(x^3y-y\right)+\left(x-1\right)\)
\(=y\left(x^3-1\right)+\left(x-1\right)\)
\(=y\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2y+xy+y+1\right)\)
b: \(x^2\left(x-2\right)+4\left(2-x\right)\)
\(=x^2\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-4\right)\)
\(=\left(x-2\right)\cdot\left(x-2\right)\left(x+2\right)=\left(x+2\right)\cdot\left(x-2\right)^2\)
c: \(x^3-x^2-20x\)
\(=x\cdot x^2-x\cdot x-x\cdot20\)
\(=x\left(x^2-x-20\right)\)
\(=x\left(x^2-5x+4x-20\right)\)
\(=x\left[x\left(x-5\right)+4\left(x-5\right)\right]\)
\(=x\left(x-5\right)\left(x+4\right)\)
d: \(\left(x^2+1\right)^2-\left(x+1\right)^2\)
\(=\left(x^2+1+x+1\right)\left(x^2+1-x-1\right)\)
\(=\left(x^2+x+2\right)\left(x^2-x\right)\)
\(=x\left(x-1\right)\left(x^2+x+2\right)\)