K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6

Bài 5:

a) Để hpt có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{2}{m}\Leftrightarrow m\ne\pm2\) 

\(\left\{{}\begin{matrix}mx+2y=m+1\\2x+my=2m-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m-mx+1}{2}\\2x+m\cdot\dfrac{m-mx+1}{2}=2m-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m-mx+1}{2}\\2x+\dfrac{m^2-m^2x+m}{2}=2m-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m-mx+1}{2}\\4x+m^2-m^2x+m=4m-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m-mx+1}{2}\\\left(m^2-4\right)x=m^2-3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m-m\cdot\dfrac{m-1}{m+2}+1}{2}=\dfrac{\dfrac{m\left(m+2\right)-m\left(m-1\right)+m+2}{m+2}}{2}=\dfrac{2m+1}{m+2}\\x=\dfrac{m^2-3m+2}{m^2-4}=\dfrac{m-1}{m+2}\end{matrix}\right.\) 

Để x,y nguyên thì \(\dfrac{m-1}{m+2};\dfrac{2m+1}{m+2}\) phải nguyên 

+) Ta có: \(\dfrac{m-1}{m+2}=\dfrac{m+2-3}{m+2}=1-\dfrac{3}{m+2}\)

=> m + 2 ∈ Ư(3) = {1; -1; 3; -3}

=> m ∈ {-1; -3; 1; -5} (1)

+) Ta có: \(\dfrac{2m+1}{m+2}=\dfrac{2m+4-3}{m+2}=2-\dfrac{3}{m+2}\)

=> m + 2 ∈ Ư(3) = {1; -1; 3; -3}

=> m ∈ {-1; -3; 1; -5} (2) 

Từ (1) và (2) => m ∈ {1; -1; 3; -3} 

28 tháng 6

Bài 4 

a, \(\left\{{}\begin{matrix}-2\sqrt{3}x+3\sqrt{5}y=-21\\4x-2\sqrt{3}y=2\sqrt{3}\left(2+\sqrt{5}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{21-3\sqrt{5}y}{-2\sqrt{3}}\\\dfrac{4\left(21-3\sqrt{5}y\right)}{-2\sqrt{3}}-2\sqrt{3}y=2\sqrt{3}\left(2+\sqrt{5}\right)\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow84-21\sqrt{5}y+12y=-12\left(2+\sqrt{5}\right)\)

\(\Leftrightarrow84+y\left(-21\sqrt{5}+12\right)=-24-12\sqrt{5}\Leftrightarrow y=\dfrac{-108-12\sqrt{5}}{-21\sqrt{5}+12}\)

\(\Rightarrow x=\dfrac{\dfrac{\left(21-3\sqrt{5}\right).\left(-108-12\sqrt{5}\right)}{-21\sqrt{5}+12}}{-2\sqrt{3}}\)

b, \(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y-2\right)^2=\left(x+1\right)^2+1+\left(y+1\right)^2\\\left(x-y-3\right)^2=\left(x-y-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2-\left(x+1\right)^2=1+\left(y+1\right)^2-\left(y-2\right)^2\\\left(x-y-3-x+y+1\right)\left(x-y-3+x-y-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4x-1=-\left(2y-1\right)\\-2\left(2x-2y-4\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+2y=2\\x-y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=1\\x=y+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y-2+y=1\\x=y+2\end{matrix}\right.\)( vô lí ) 

Vậy hpt vô nghiệm 

26 tháng 9 2021

\(a,=2\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =2\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{4+\sqrt{5}-1}\\ =2\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\\ =2\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}-1\right)^2}\\ =2\left(\sqrt{5}-1\right)^2=2\left(6-2\sqrt{5}\right)=12-4\sqrt{5}\\ b,=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\\ =\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\\ =32-8\sqrt{15}+8\sqrt{15}-30=2\)

 

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

29 tháng 10 2021

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt[]{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)

\(=18+3\sqrt{81-80}.x=18+3x\)\(\Rightarrow x^3-3x=18\left(1\right)\)

\(y=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow y^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.y=6+3y\)\(\Rightarrow y^3-3y=6\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow P=x^3+y^3-3\left(x+y\right)+1996=x^3-3x+y^3-3y+1996\)

\(=18+6+1996=2020\)

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

24 tháng 7 2021

undefined

undefined

Bài 3:

a) Thay x=9 vào A, ta được:

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)

b) Ta có: M=B:A

\(=\left(\dfrac{x+3\sqrt{x}}{x-25}+\dfrac{1}{\sqrt{x}-5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(=\dfrac{x+3\sqrt{x}+\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(=\dfrac{x+4\sqrt{x}+5}{x+7\sqrt{x}+10}\)

a: Ta có: BC⊥BA tại B

nên BC là tiếp tuyến của (A;AB)

b: Xét (A) có 

CB là tiếp tuyến

CD là tiếp tuyến

Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

hay AC\(\perp\)BD

12 tháng 1 2022

Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm

2:

a: =(1+căn 3)^2-5

=4+2căn 3-5

=2căn 3-1

b: \(=\sqrt{\dfrac{125}{7}\cdot\dfrac{35}{81}}=\sqrt{\dfrac{625}{81}}=\dfrac{25}{9}\)

c: \(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)-\sqrt{6}+\sqrt{2}\)

=2-căn 6+căn 2

3:

a: \(=\dfrac{2\sqrt{3}+3\sqrt{3}-\sqrt{3}}{\sqrt{3}}=2+3-1=5\)

b: \(=\dfrac{6\sqrt{2}+7\sqrt{2}-5\sqrt{2}}{\sqrt{2}}=13-5=8\)

c: \(=\dfrac{12-10+8}{2}=5\)

d: \(=\sqrt{\dfrac{1}{5}:5}-\sqrt{\dfrac{9}{5}:5}+\sqrt{5:5}\)

=1/5-3/5+1

=3/5

2) Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}:\left(\dfrac{x-2}{x-4}-\dfrac{1}{\sqrt{x}+2}\right)\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}:\dfrac{x-2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

13 tháng 7 2023

     2\(\sqrt{\dfrac{16}{3}}\)  - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\)  - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{11}{2\sqrt{3}}\)

\(\dfrac{11\sqrt{3}}{6}\)

f, 2\(\sqrt{\dfrac{1}{2}}\)\(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5\sqrt{2}}{4}\)

 

 

13 tháng 7 2023

(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{3-1}\)

\(\dfrac{-4}{2}\)

= -2