Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(G\) là trọng tâm \(\Delta ABC\) \(\Rightarrow AG\perp\left(ABC\right)\)
Và \(AG=\frac{a\sqrt{3}}{3}\)
Vì G là hình chiếu của A' trên mp(ABC) nên \(\left(\widehat{AA',\left(ABC\right)}\right)=\widehat{A'AG}=60^O\)
\(A'G=AG.tan\left(\widehat{A'AI}\right)=a\)
Vậy \(V=IA'.S_{ABC}=a.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi H là trung điểm BC \(\Rightarrow AH\perp BC\) và \(AH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
Áp dụng định lý Pitago cho tam gaics vuông AA'H:
\(A'H=\sqrt{A'A^2-AH^2}=\dfrac{3a}{2}\)
\(V=A'A.S_{ABC}=\dfrac{3a}{2}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{3}}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án A
Gọi H là trung điểm của BC, giao điểm của (P) và A A ' là P.
∆ A H P vuông tại P có A P = A H 2 - P H 2 = 3 a 4
∆ A A ' O ~ ∆ A H P ⇒ A ' O A O = H P A P
⇒ V A B C . A ' B ' C ' = O A ' . S A B C = a 3 3 12
Gọi E là trung điểm BC → AE vuông góc (vg) với BC
mà (ABC) vg (BB'C'C)
→ AE vg (BB'C'C)
\(V_{A.BB'C'C}=\frac{1}{3}\cdot AE\cdot S_{BB'C'C}=\frac{1}{3}\cdot\frac{a\sqrt{3}}{2}\cdot BB'\cdot BC=\frac{a^3\sqrt{3}}{3}\)
Vì SBB'C = 1/2 * SBB'C'C
nên VABB'C' = 1/2 * VA.BB'C'C = (a3căn3)/6