K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
4 tháng 8 2018

Chọn đáp án D

1 tháng 3 2019

Đáp án B

29 tháng 6 2018

Đáp án D

Gọi H là trung điểm của BC, khi đó từ giả thiết ta có A'H  (ABC). Ta có:

A'H = a 3 =>  V A . BCC ' B '   =   V ABC . A ' B ' C '   -   V A ' . ABC

13 tháng 11 2019

Chọn đáp án A

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:

$SA\perp (ABCD)$ nên $45^0=\angle (SB, (ABCD))=\angle (SB, AB)=\widehat{SBA}$

$\Rightarrow SA=AB=5$ (cm)

Thể tích khối chóp $S.ABCD$:

$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.5.5^2=\frac{125}{3}$ (cm3)

23 tháng 7 2017

Chọn D

10 tháng 5 2018

Phương pháp:

Xác định góc 30 ° (góc tạo bởi hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến).

Tính diện tích tam giác đáy và chiều cao lăng trụ rồi tính thể tích theo công thức V = B.h

 

Cách giải:

Ta có:


Chọn A.

6 tháng 10 2017

Đáp án C

là góc giữa hai mặt phẳng (SAD) và (ABCD). Do đó, ta có góc SAB = 600.

Tam giác SAB vuông tại B có SAB = 600  nên SB = AB.tan60 = 2a√3 

 

Vậy thể tích V của khối chóp S.ABCD là:

  V = 1 3 S A B C D . S B = 1 3 . 4 a 2 . 2 a 3 = 8 a 3 3 3