Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây nhé!
http://diendan.hocmai.vn/showthread.php?t=234169
a) Kẻ BH vuông góc với AD.
SABCD=BH.AD=BH.2BM=S
=> BH.BM=\(\dfrac{S}{2}\)
Có AD song song với BM (ABCD là hbh)
SABMD=\(\dfrac{\left(AD+BM\right).BH}{2}=\dfrac{3BM.BH}{2}=\dfrac{3}{2}.\dfrac{S}{2}=\dfrac{3S}{4}\)
b) Nối A với M. T là trung điểm của AD. Nối B với T.
Ta có: TDMB là hbh (TD song song với BM; TD=BM=\(\dfrac{1}{2}BC\))
=> TF là đường TB của tam giác ADN => AF=FN (1)
MN là đường TB của tam giác BCF => FN=NC (2)
Từ (1)(2)=> AF=FN=NC
Ta có: SNMC=SFMN=SAFM
mà SABC =\(\dfrac{S}{2}\) và SABM=SACM => SAMC= \(\dfrac{S}{4}\)
=> SMNC = \(\dfrac{S}{4}:3=\dfrac{S}{12}\)
=> SABMN = SABC-SMNC = \(\dfrac{S}{2}-\dfrac{S}{12}=\dfrac{5S}{12}\)