![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: x-2y=6 => x=6+2y(*)
Theo bài ra ta có: x\(^2\)+3y+2=0(1)
Thay (*) vào (1) ta có: (6+2y)\(^2\)+ 3y+2=0
\(\Leftrightarrow\)36+24y+4y\(^2\)+3y+2=0
\(\Leftrightarrow\)4y\(^2\)+27y+38=0
\(\Leftrightarrow\)4y\(^2\)+8y+19y+38=0
\(\Leftrightarrow\)(4y+19)(y+2)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}y=-2\\y=-4.75\end{matrix}\right.\)
+ khi y=-2 thì x=6-4=2 => 3a-3=0=> a=1
+khi y=-4.75 thì x=6-4.75\(\times\)2=-3.5=> 3a-3=-8.25=> a=-1.75
Vậy ............................
TICK CHO MIH NHA
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Kẻ \(OM\perp AB\), \(OM\)cắt \(CD\)tại \(N\).
Khi đó \(MN=8cm\).
TH1: \(AB,CD\)nằm cùng phía đối với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)
\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2)
Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).
TH2: \(AB,CD\)nằm khác phía với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)
\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)
Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).
Bài 3:
Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).
\(MA+MB=MA'+MB\ge A'B\)
Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).
Suy ra \(M\left(\frac{5}{3},0\right)\).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a)
\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1
\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)
b)
Với x >1, ta có:
A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)
\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)
Vậy không có x để A >-6
![](https://rs.olm.vn/images/avt/0.png?1311)
Với x = 9 tmdk thay vào A ta được : \(A=\frac{\sqrt{9}+3}{9-4}=\frac{3+3}{5}=\frac{6}{5}\)
\(B=\frac{-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{1}{\sqrt{x}+2}\)
\(P=\frac{A}{B}=\frac{\frac{\sqrt{x}+3}{x-4}}{\frac{1}{\sqrt{x}+2}}=\frac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+2}{1}=\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
Xét hiệu P - 1 ta có : \(P-1=\frac{\sqrt{x}+3}{\sqrt{x}-2}-1=\frac{\sqrt{x}+3-\sqrt{x}+2}{\sqrt{x}-2}=\frac{5}{\sqrt{x}-2}>0\forall x>4\)
=> P > 1
a, Thay x = 9 vào A ta được : \(A=\frac{3+3}{9-4}=\frac{6}{5}\)
b, Với \(x\ge0;x\ne4\)
\(B=-\frac{4}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{-4+\sqrt{x}+2}{x-4}=\frac{\sqrt{x}-2}{x-4}=\frac{1}{\sqrt{x}+2}\)
c, với x > 4 Ta có : \(P=\frac{A}{B}\Rightarrow\frac{\sqrt{x}+3}{x-4}:\frac{1}{\sqrt{x}+2}=\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
Ta có : \(1=\frac{\sqrt{x}-2}{\sqrt{x}-2}\)mà \(\sqrt{x}+3>\sqrt{x}-2\)
Vậy P > 1