Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(0\le x\le1\)
\(A=2014\sqrt{x}+2015\sqrt{1-x}\)
\(=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có:
\(\sqrt{x}+\sqrt{1-x}\ge\sqrt{x+1-x}=1\)
Và \(x\le1\Leftrightarrow1-x\ge0\)
Từ đây ta có
\(A\ge2014.1+0=2014\)
Vậy GTNN của A = 2014 đạt được khi x = 1
`a)M=(x+2)/(xsqrtx-1)+(sqrtx+1)/(x+sqrtx+1)-1/(sqrtx-1)(x>=0,x ne 1)`
`M=(x+2)/((sqrtx-1)(x+sqrtx+1))+((sqrtx+1)(sqrtx-1))/((sqrtx-1)(x+sqrtx+1))-(x+sqrtx+1)/((sqrtx-1)(x+sqrtx+1))`
`M=(x+2+x-1-x-sqrtx-1)/((sqrtx-1)(x+sqrtx+1))`
`M=(x-sqrtx)/((sqrtx-1)(x+sqrtx+1))`
`M=(sqrtx(sqrtx-1))/((sqrtx-1)(x+sqrtx+1))`
`M=sqrtx/(x+sqrtx+1)`
`b)x=25(tmđk)`
`=>sqrtx=5`
`=>M=5/(25+5+1)`
`=>M=5/31`
`c)M=sqrtx/(x+sqrtx+1)`
`x=0=>M=0<1/3`
`x>0=>M=1/(sqrtx+1+1/sqrtx)`
Áp dụng bđt cosi:
`sqrtx+1/sqrtx>=2`
`=>sqrtx+1+1/sqrtx>=3>0`
`=>M<=1/3`
Dấu "=" xảy ra khi `sqrtx=1/sqrtx<=>x=1`(KTMĐKXĐ)
`=>M<1/3`
Vậy `M<1/3`
`d)M=2/7`
`<=>sqrtx/(x+sqrtx+1)=2/7`
`<=>2x+2sqrtx+2=7`
`<=>2x-5sqrtx+2=0`
`<=>2x-4sqrtx-sqrtx+2=0`
`<=>(sqrtx-2)(2sqrtx-1)=0`
`<=>[(sqrtx=2),(2sqrtx=1):}`
`<=>[(x=4),(x=1/4):}(TMĐK)`
`e)` Vì `x>=0=>sqrtx>=0`
`=>x+sqrtx+1>=1>0`
`=>M>=0`
Mặt khác:`M<1/3`(câu b)
`=>M<1=>M-1<0`
`=>M(M-1)<=0`
`<=>M^2-M<=0`
`<=>M^2<=M`
a: Ta có: \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b: Thay x=25 vào M, ta được:
\(M=\dfrac{5}{25+5+1}=\dfrac{5}{31}\)
c: Ta có: \(M-\dfrac{1}{3}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}\)
\(=\dfrac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\forall x\) thỏa mãn ĐKXĐ
hay \(M< \dfrac{1}{3}\)
\(ac=-\dfrac{1}{2}< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt trái dấu
Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)
Đồng thời theo Viet: \(x_1+x_2=m\)
Ta có:
\(\left|x_2\right|-\left|x_1\right|=2021\)
\(\Leftrightarrow x_2-\left(-x_1\right)=2021\)
\(\Leftrightarrow x_1+x_2=2021\)
\(\Leftrightarrow m=2021\)
Ta có \(xy\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
<=>\(x\left(x^2y^3-2x^2y-y+4y^2+2\right)=1\)
=> \(x^2y^3-2x^2y-y+4y^2+2=\frac{1}{x}\)
Do VT là số nguyên với x,y nguyên
=> \(\frac{1}{x}\)nguyên => \(x=\pm1\)
+ \(x=1\)=> \(y^3-3y+4y^2+1=0\)( không có nghiệm nguyên)
+ x=-1
=> \(y^3-3y+4y^2+3=0\)( không có nghiệm nguyên )
=> PT vô nghiệm
Vậy PT vô nghiệm
Bài 1:
a: \(\sqrt{x-1}+2\sqrt{9x-9}-14=0\)
\(\Leftrightarrow7\sqrt{x-1}=14\)
\(\Leftrightarrow x-1=4\)
hay x=5
b: Xét tứ giác MAIO có
\(\widehat{OIM}=\widehat{OAM}=90^0\)
Do đó: MAIO là tứ giác nội tiếp