K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

a, sinC = \(\frac{AB}{BC}\); tanC = \(\frac{AB}{AC}\)

cosC = \(\frac{AC}{BC}\); cotC = \(\frac{AC}{AB}\)

b, Xét tam giác ABC vuông tại A, đường cao AH

tanB = \(\frac{AC}{AB}=\sqrt{2}\Rightarrow AC=\sqrt{2}AB\)

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{AB^2}+\frac{1}{2AB^2}\Rightarrow AB\approx4,24\)cm 

\(\Rightarrow AC\approx4,24\sqrt{2}\)cm

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}\approx\sqrt{4,24^2+\left(4,24\sqrt{2}\right)^2}\approx7,34\)cm 

17 tháng 7 2023

Em dùng công thức toán học hoặc viết ra giấy, chụp ảnh rồi up lên chứ thế này cô không đúng đề bài để giúp em được.

13 tháng 7 2023

     2\(\sqrt{\dfrac{16}{3}}\)  - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\)  - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{11}{2\sqrt{3}}\)

\(\dfrac{11\sqrt{3}}{6}\)

f, 2\(\sqrt{\dfrac{1}{2}}\)\(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5\sqrt{2}}{4}\)

 

 

13 tháng 7 2023

(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{3-1}\)

\(\dfrac{-4}{2}\)

= -2

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.

13 tháng 7 2023

Câu h của em đây nhé

h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{2}\)

= -2

NV
15 tháng 1

\(ac=-\dfrac{1}{2}< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt trái dấu

Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\\\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)

Đồng thời theo Viet: \(x_1+x_2=m\)

Ta có:

\(\left|x_2\right|-\left|x_1\right|=2021\)

\(\Leftrightarrow x_2-\left(-x_1\right)=2021\)

\(\Leftrightarrow x_1+x_2=2021\)

\(\Leftrightarrow m=2021\)

a: Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(P=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-1\right)=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)

b: Ta có: \(A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

NV
4 tháng 1

d.

Ta có: \(AB=AC\) (t/c hai tiếp tuyến cắt nhau)

\(OB=OC=R\)

\(\Rightarrow OA\) là trung trực BC hay OA vuông góc BC tại I

Xét hai tam giác vuông AIB và ABO có:

\(\left\{{}\begin{matrix}\widehat{AIB}=\widehat{ABO}=90^0\\\widehat{BAI}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AIB\sim\Delta ABO\left(g.g\right)\)

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{AB}{AO}\Rightarrow AI.AO=AB^2\)

Theo c/m câu c có \(AB^2=AE.AF\)

\(\Rightarrow AI.AO=AE.AF\)

e.

Từ đẳng thức trên ta suy ra: \(\dfrac{AI}{AF}=\dfrac{AE}{AO}\)

Xét hai tam giác AIE và AFO có:

\(\left\{{}\begin{matrix}\dfrac{AI}{AF}=\dfrac{AE}{AO}\left(cmt\right)\\\widehat{OAF}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AIE\sim\Delta AFO\left(c.g.c\right)\)

\(\Rightarrow\widehat{AFO}=\widehat{AIE}\)

Mà \(\widehat{AIE}+\widehat{OIE}=180^0\) (kề bù)

\(\Rightarrow\widehat{AFO}+\widehat{OIE}=180^0\)

\(\Rightarrow\) Tứ giác FOIE nội tiếp

NV
4 tháng 1

a.

Do AB là tiếp tuyến của (O) \(\Rightarrow AB\perp OB\Rightarrow\widehat{ABO}=90^0\)

\(\Rightarrow\) 3 điểm A, B, O thuộc đường tròn đường kính OA (1)

Tương tự AC là tiếp tuyến của (O) nên 3 điểm A, C, O thuộc đường tròn đường kính OA

\(\Rightarrow\) 4 điểm A, B, C, O thuộc đường tròn đường kính OA hay tứ giác ABOC nội tiếp

b.

Do M là trung điểm EF \(\Rightarrow OM\perp EF\Rightarrow\widehat{OMA}=90^0\)

\(\Rightarrow\) 3 điểm A, M, O thuộc đường tròn đường kính OA (2)

(1);(2) \(\Rightarrow\) 4 điểm A, B, M, O thuộc đường tròn đường kính OA

Hay tứ giác ABMO nội tiếp

c.

Xét hai tam giác ABE và AFB có:

\(\left\{{}\begin{matrix}\widehat{EAB}\text{ chung}\\\widehat{ABE}=\widehat{AFB}\left(\text{cùng chắn BE}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta ABE\sim\Delta AFB\left(g.g\right)\)

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AE}{AB}\) \(\Rightarrow AB^2=AE.AF\)

28 tháng 10 2015

câu này easy có ob^2+oe^2=6,25 và od^2+oc^2=25 mà od=1/2ob;oc=2oe =>oe=2,5 và ob=0 dễ chứng minh nốt bc=5