K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Hình bạn tự vẽ nhé!

Ta có: \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\left(gt\right)\)

\(\Rightarrow AEDF\) là hình chữ nhật

\(AD\) là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow AEDF\) là hình vuông.

\(\Leftrightarrow AF\)//\(ED\), \(AE\)//\(DF\)\(ED=DF=AE=AF\)

Xét \(\Delta ABC\) ta có: \(AD\) là tia phân giác của \(\widehat{BAC}\) nên theo tính chất đường phân giác của tam giác, ta có: \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{2}{3}\)

\(\Leftrightarrow\left\{\begin{matrix}AB=\frac{2}{3}AC\\AC=\frac{3}{2}AB\end{matrix}\right.\)

Áp dụng định lý Py-ta-go vào \(\Delta_vABC\) ta có:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(2+3\right)^2=AB^2+\left(\frac{3}{2}AB\right)^2\)

\(\Leftrightarrow25=AB^2+\frac{9}{4}AB^2\)

\(\Leftrightarrow25=\frac{13}{4}.AB^2\)

\(\Leftrightarrow AB^2=25.\frac{4}{13}\)

\(\Leftrightarrow AB=\sqrt{\frac{100}{13}}=\frac{10\sqrt{13}}{13}\left(cm\right)\)

Ta lại có: \(AC=\frac{3}{2}.AB=\frac{3}{2}.\frac{10\sqrt{13}}{13}=\frac{15\sqrt{13}}{13}\left(cm\right)\)

\(DF\)//\(AE\left(cmt\right)\) nên theo hệ quả của định lý Ta- let ta có:

\(\frac{DF}{AB}=\frac{DC}{BC}=\frac{3}{5}\Rightarrow DF=\frac{AB.DC}{BC}=\frac{\frac{10\sqrt{13}}{13}.3}{5}=\frac{6\sqrt{13}}{13}\left(cm\right)=ED=AE\)

\(\frac{FC}{AC}=\frac{DF}{AB}\Rightarrow FC=\frac{AC.DF}{AB}=\frac{\frac{15\sqrt{3}}{13}.\frac{6\sqrt{13}}{13}}{\frac{10\sqrt{13}}{13}}=\frac{9\sqrt{13}}{13}\left(cm\right)\)

Mặc khác: \(EB=AB-AE\)

\(\Leftrightarrow EB=\frac{10\sqrt{13}}{13}-\frac{6\sqrt{13}}{13}=\frac{4\sqrt{13}}{13}\left(cm\right)\)

Vậy \(S_{DEB}+S_{DFC}=\left(\frac{1}{2}.DE.EB\right)+\left(\frac{1}{2}.DF.FC\right)\)

=\(\left(\frac{1}{2}.\frac{6\sqrt{13}}{13}.\frac{4\sqrt{13}}{13}\right)+\left(\frac{1}{2}.\frac{6\sqrt{13}}{13}.\frac{9\sqrt{13}}{13}\right)\)

=\(\frac{12}{13}+\frac{27}{13}=\frac{39}{13}=3\left(cm^2\right)\)

21 tháng 2 2017

Link: https://hoc24.vn/hoi-dap/question/182508.html

9 tháng 2 2017

1

9 tháng 2 2017

1 đó

8 tháng 2 2017

1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)

\(\Leftrightarrow x-y=10y-10z\)

\(\Leftrightarrow x=11y-10z\)

Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:

\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)

Chá quá, có ghi nhìn không rõ đề

8 tháng 2 2017

2) \(2x^2=9x-4\)

\(\Leftrightarrow2x^2-9x+4=0\)

\(\Leftrightarrow2x^2-8x-x+4=0\)

\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow2x-1=0\) hoặc x-4=0

1) 2x-1=0<=>x=1/2

2)x-4=0<=>x=4(Loại)

=> x=1/2

17 tháng 9 2017

Bài 2 :

a ) \(25-20x+4x^2=0\)

\(\Leftrightarrow\left(5-2x\right)^2=0\)

\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)

Vậy \(x=\dfrac{5}{2}\)

17 tháng 9 2017

a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)

\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)

Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)

Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài

Vậy..

2 tháng 11 2017

b)x3-2x2-4xy2+x

=x(x2-2x-4y2+1)

=x[(x2-2x+1)-4y2]

=x[(x-1)2-4y2]

=x(x-1-2y)(x-1+2y)

2 tháng 11 2017

c) (x+2)(x+3)(x+4)(x+5)-8

=[(x+2)(x+5)][(x+3)(x+4)]-8

=(x2+5x+2x+10)(x2+4x+3x+12)-8

=(x2+7x+10)(x2+7x+12)-8

đặt x2+7x+10 =a ta có

a(a+2)-8

=a2+2a-8

=a2+4a-2a-8

=(a2+4a)-(2a+8)

=a(a+4)-2(a+4)

=(a+4)(a-2)

thay a=x2+7x+10 ta đc

(x2+7x+10+4)(x2+7x+10-2)

=(x2+7x+14)(x2+7x+8)

bài 2 x3-x2y+3x-3y

=(x3-x2y)+(3x-3y)

=x2(x-y)+3(x-y)

=(x-y)(x2+3)

21 tháng 9 2016

hại não thật kiếm mấy câu dạng này ở đâu thế bữa nào lên xem

22 tháng 9 2016

24 lần

30 tháng 4 2017

đề 1 bài 4

xét tam gics ABC và tam giác HBA có

góc B chung

góc BAC = góc BHA (=90 độ)

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

=> AB/HB=BC/AB=> AB^2=HB *BC

áp dụng đl py ta go trog tam giác vuông ABC có

BC^2 = AB^2 +AC^2=6^2+8^2=100

=> BC =\(\sqrt{100}\)=10 cm

ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )

=> AC/AH=BC/BA=>AH=8*6/10=4.8CM

=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm

=>HC =BC-BH=10-3,6=6,4cm

30 tháng 4 2017

dề 1 bài 1

5x+12=3x -14

<=>5x-3x=-14-12

<=>2x=-26

<=> x=-12

vạy S={-12}

(4x-2)*(3x+4)=0

<=>4x-2=0<=>x=1/2

<=>3x+4=0<=>x=-4/3

vậy S={1/2;-4/3}

đkxđ : x\(\ne2;x\ne-3\)

\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)

<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)

=> 4x+12+x-2=0

<=>5x=-10

<=>x=-2 (nhận)

vậy S={-2}

17 tháng 7 2017

\(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x^2-1\right)\)

\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x^3+x-1\right)\left(x+1\right)\)

17 tháng 7 2017

Thanks ạ