Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=-\left|x-\dfrac{7}{2}\right|+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi x=7/2
Bài 2:
a: \(A=2^{21}-2^{18}=2^{18}\cdot\left(2^3-1\right)=2^{17}\cdot14⋮14\)
b: \(B=2^6\cdot5^6-5^6\cdot5=5^6\cdot59⋮59\)
c: \(C=5^n\cdot25+5^n\cdot5+5^n=5^n\cdot31⋮31\)
Câu 1:
Để A nguyên
=> 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
Có 3n - 3 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)
=> n - 1 thuộc {1; -1; 5; -5}
=> n thuộc {2; 0; 6; -4}
Câu 2:
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)=2^{18}.7\)
\(=2^{16}.2^2.7\)
\(=2^{16}.14\)chia hết cho 14
=> \(8^7-2^{18}\text{ chia hết cho }14\)(Đpcm)
a) Ta có :
87 - 218 = ( 23 )7 - 218 = 221 - 218 = 218 . ( 23 - 1 ) = 218 . 7 = 217 . ( 2 . 7 ) = 217 . 14 \(⋮\)14
b) A = | x - 2018 | - | x - 2017 | \(\le\)| x - 2018 - x + 2017 | = 1
GTLN của A = 1 khi ( x - 2018 ) . ( x - 2017 ) \(\ge\)0
c) 3x+2 - 3x = 24
3x . 32 - 3x = 24
3x . ( 32 - 1 ) = 24
3x . 8 = 24
3x = 24 : 8
3x = 3
=> x = 1
Bài 1
số số hạng là
(99-1) : 1 + 1 = 99 ( số )
tỏng là
(99+1) x 99 : 2= 4950
đap số 4950
mấy câu sau tự làm ngại làm lắm ok
Lớp 7 mà bị hỏi bài 9 thì anh thấy quá khó rồi đó.
Gọi \(A\) là số học sinh của lớp. \(A\) chia 5 dư 3 nên \(9A\) chia 5 dư 2.
(CM: \(A=5k+3\Rightarrow9A=45k+27=5\left(9k+5\right)+2\)).
Tương tự, \(A\) chia 7 dư 1 nên \(9A\) chia 7 dư 2.
Vậy \(9A-2\) vừa chia hết cho 5 vừa chia hết cho 7 nên \(9A-2⋮35\).
Do \(40\le A\le60\) nên \(A=43\) thoả, mấy cái còn lại không thoả.
Câu 1 đề sai
Câu 2: Ta có:\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{3.7}-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{17}\left(2^4-2\right)\)
\(=2^{17}.14⋮14\)
Nên \(8^7-2^{18}⋮14\)
Vậy \(8^7-2^{18}⋮14\)
Cảm ơn anh Incursion_03 đã nhắc nhở nha.
Các bạn cho mình sửa đề chút ạ :
\(\frac{a-b+c}{a+2b-c}\)
1/ \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)
đề sai cmnr:v
\(A=\dfrac{1}{3+\left|x-2\right|}\le\dfrac{1}{3}\)
Dấu "=" khi x=2